Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы материаловедение.doc
Скачиваний:
9
Добавлен:
24.09.2019
Размер:
2.27 Mб
Скачать
  1. Основные свойства металлов. Классификация

Металлы -(от греч. Metallon-руда, металл) -вещества, характеризующиеся в нормальных условиях высокими электропроводностью и теплопроводностью, способностью хорошо отражать электромагнитные волны, пластичностью. Их свойства обусловлены наличи­ем в кристаллической решетке несвязанных электронов (1022-1023 в 1 см3). Согласно современным представлениям, металлы со­стоят из ионного кристаллического остова, окруженного «электронным газом», который компенсирует энергию электростатического отталкивания ионов, связывая их в конден­сированное тело (металлическая связь).

Энергия металлической связи Есв мень­ше энергии ковалентной, поэтому металли­ческие кристаллы обычно имеют более низкие температуры плавления, испарения, модуль упругости по сравнению с ковалентными кристаллами. Вследствие разной на­правленности металлических связей и образования неидеальных структур метал­лические кристаллы более пластичны и имеют меньшую твердость, чем ковалентные. С увеличением энергии связи Есв обычно растут температура плавления Тпл, модуль упругости Еупр, плотность и умень­шается коэффициент линейного расшире­ния а металлов. Из известных в последнее время 116 хи­мических элементов более 80 обладают свойствами металлов. Характерные свой­ства присущи металлам при нормальных условиях: атмосферном давлении, комнат­ной температуре, действии земного тяготе­ния. Воздействие высоких давлений, экстремальных температур, электромагнит­ных излучений, активных сред приводит к изменению фазового состояния и свойств металлов.

Металлы отличаются высокой электро­проводностью (106 -108 Ом-1 -1) при ком­натной температуре. Носителями тока в них являются электроны проводимости, обладающие высокой подвижностью. Несовер­шенства кристаллической решетки, приме­си, тепловые колебания атомов приводят к рассеянию электронов, обусловливающе­му электрическое сопротивление металла. При понижении температуры оно уменьша­ется до определенного постоянного уров­ня. Это значение остаточного сопротивления рос:т характеризует концентрацию дефектов в кристаллической решетке. Для сверхчис­тых и бездефектных металлов pост в 104-105 раз меньше их удельного сопротивления при комнатной температуре.При воздействии повышенных темпе­ратур металлам свойственно явление испускания электронов - термоэлектронная эмиссия. Эмиссия электронов с поверхности металлических электродов имеет место при воздействии электричес­ких полей напряженностью Е =107 В/см - автоэлектронная эмиссия, электромагнитных излучений - фотоэлектронная эмиссия, при бомбардировке первичны­ми электронами - вторичная электронная эмиссия или ионами - ионноэлектронная эмиссия.

При перепаде температур в металлах воз­никают термоэлектрические явления, обус­ловленные связью между тепловыми и электрическими процессами в проводни­ках. Теплоемкость металлов складывается из теплоемкости ионного остова (решеточ­ная теплоемкость) и электронов (электрон­ная теплоемкость). На свойства металлов специфическое воздействие оказывает электромагнитное поле, которое проникает в образец метал­ла на глубину так называемого «скин-слоя». Для электромагнитных волн оптического диапазона металлы обычно непрозрачны. Магнитные свойства металлов определя­ются периодическим пространственным расположением магнитоактивных ионов и ориентацией их магнитных моментов в кристалле.

Механические свойства металлов опре­деляются наличием и концентрацией дефектов, прежде всего дислокаций в кристал­лической решетке. Особенностью металлов является малое сопротивление перемеще­нию дислокаций в бездефектных кристал­лах. Сопротивление разрушению или пластическому деформированию идеально­го кристалла составляет около 10-1 G (G -модуль сдвига).

Все металлы подразделяют на две груп­пы: черные - железо и его сплавы и цвет­ные - остальные металлы. Последние в зависимости от свойств и распространен­ности подразделяют на легкоплавкие (Zn, Cd, Sn, Sb, Hg, Pb, Bi), тугоплавкие (Ti, Cr, Zr, Nb и др.), благородные (Au, Ag, Pt, Ph, Pd, Os, и др.).

  1. Инструментальные стали Инструментальные стали предназначены для изготовления режущего и измерительного инструмента, штампов холодного и горячего деформирования, а также ряда деталей точных механизмов и приборов: пружин, подшипников качения, шестерен и др. Часто из таких сталей изготавливают только рабочую (режущую) часть инструмента, а крепежные части выполняют из конструкционных сталей. Основными потребительскими требованиями к инструментальным сталям являются высокие твердость, износостойкостъ и прочность при высокой (500...800°С) теплостойкости. Кроме эксплуатационных свойств, для инструментальных сталей большое значение имеют технологические свойства: прокаливаемость, малые объемные изменения при закалке, обрабатываемость давлением, резанием, шлифуемостъ. Инструментальные стали классифицируются (ГОСТ 1435-74 и ГОСТ 5950-73) по основному потребительскому свойству на стали высокой твердости, стали повышенной вязкости и теплостойкие стали. Стали высокой твердости и повышенной вязкости используются как нетеплостойкие. Инструментальные стали высокой твердости по химическому составу могут быть высокоуглеродистыми (0,68...1,35% С) и низколегированными (Mn, Si, Cr и др.). Структура после термообработки - мартенсит и перлит. Температура эксплуатации для изделий из таких сталей до 190... 225°С; при этом их твердость - 60...68 HRC. Инструментальные стали высокой твердости (У10...У13, У10А...У13А, 13Х, ХВСГ, 9ХФ, 7ХГ2ВМ и др.) классифицируются по прокаливаемости на стали небольшой, повышенной и высокой прокаливаемости. Величина прокаливаемости определяет размер изделия. Так инструментальные стали небольшой прокаливаемости используют для изготовления тонкого инструмента диаметром менее 12...15 мм, а стали высокой прокаливаемости - для массивного инструмента и инструмента сложной формы. Стали повышенной вязкости по химическому составу - среднеуглеродистые (0,60...0,74% С), среднелегированные (Mn, Si, Cr и др.). Для изделий из этих сталей температура эксплуатации, как правило, менее 200°С, а их твердость - 62 HRC. Стали повышенной вязкости (У7, У7А, 7ХФ, 6ХС) используются для изготовления инструментов для обработки древесины (пилы, ножи и др.). Инструментальные теплостойкие стали по температуре эксплуатации в свою очередь делят на собственно теплостойкие (500...800°С) и полутеплостойкие (до 500°С). По химическому составу эти стали являются углеродистыми (0,22...1,65% С), высоколегированными (Мп, Si, Cr, W, Мо и др.). Теплостойкие стали высокой твердости объединяют в группу так называемых быстрорежущих сталей, маркируемых по ГОСТ 19265-73, буквой Р (режущие). После буквы Р в марке следует цифра, указывающая среднее содержание в процентах вольфрама - главного легирующего элемента этих сталей (буква В - его условное обозначение - пропускается): затем указываются принятыми для обозначения как и в остальных сталях буквами другие легирующие элементы с цифрами, указывающими их содержания в процентах, если это содержание больше 1...2%. В состав всех быстрорежущих сталей непременно входят углерод (0,8...1,25%), хром (около 4%) и ванадий (1...2%), содержание которых в марке не указывается. Фазовый состав быстрорежущих сталей в отожженном состоянии представлен легированным ферритом и карбидами МбС, МззСб, МС, МзС. Основным карбидом является М6С. Количество карбидной фазы в стали Р18 достигает 25...30%, а в стали Р6М5 - 22%. Инструментальные стали для измерительного инструмента (плиток, калибров, шаблонов) помимо твердости и износостойкости должны сохранять постоянство размеров и хорошо шлифоваться. Обычно применяют стали У8...У12, X, ХВГ, Х12Ф1. Необходимые требования обеспечивают применением обработки холодом до - 60°С (нередко многократной) и отпуска при 120...130°С непосредственно после закалки. Измерительные скобы, шкалы, линейки и другие плоские и длинные инструменты изготовляют из листовых сталей 15, 15Х. Для получения рабочей поверхности с высокой твердостью и износостойкостью инструменты подвергают цементации и закалке.

  1. Твердые сплавы. Твёрдые сплавы — твёрдые и износостойкие металлические материалы, способные сохранять эти свойства при 900—1150 °C. В основном изготовляются из высокотвердых и тугоплавких материалов на основе карбидов вольфрама, титана, тантала, хрома, связанные кобальтовой металлической связкой, при различном содержании кобальта или никеля. Типы твёрдых сплавов: Различают спечённые и литые твёрдые сплавы. Главной особенностью спеченных твердых сплавов является то, что изделия из них получают методами порошковой металлургии и они поддаются только обработке шлифованием или физико-химическим методам обработки (лазер, ультразвук, травление в кислотах и др), а литые твердые сплавы предназначены для наплавки на оснащаемый инструмент и проходят не только механическую, но часто и термическую обработку (закалка, отжиг, старение и др). Порошковые твердые сплавы закрепляются на оснащаемом инструменте методами пайки или механическим закреплением. Твердые сплавы различают по металлам карбидов, в них присутствующих: вольфрамовые — ВК2, ВК3,ВК3М, ВК4В, ВК6М, ВК6, ВК6В, ВК8, ВК8В, ВК10, ВК15, ВК20, ВК25; титано-вольфрамовые — Т30К4, Т15К6, Т14К8, Т5К10, Т5К12В; титано-тантало-вольфрамовые — ТТ7К12, ТТ10К8Б.Безвольфрамовые ТНМ20, ТНМ25, ТНМ30 По химическому составу твердые сплавы классифицируют: вольфрамокобальтовые твердые сплавы (ВК); титановольфрамокобальтовые твердые сплавы (ТК);титанотанталовольфрамокобальтовые твердые сплавы (ТТК). Твердые сплавы по назначению делятся (классификация ИСО) на: Р — для стальных отливок и материалов, при обработке которых образуется сливная стружка; М — для обработки труднообрабатываемых материалов (обычно нержавеющая сталь); К — для обработки чугуна; N — для обработки алюминия, а также других цветных металлов и их сплавов; S — для обработки жаропрочных сплавов и сплавов на основе титана; H — для закаленной стали. Из-за дефицита вольфрама разработана группа безвольфрамовых твердых сплавов, называемых керметами. Эти сплавы содержат в своем составе карбиды титана (TiC), карбонитриды титана (TiCN), связанные никельмолибденовой основой. Технология их изготовления аналогична вольфрамосодержащим твердым сплавам. Эти сплавы по сравнению с вольфрамовыми твердыми сплавами имеют меньшую прочность на изгиб, ударную вязкость, чувствительны к перепаду температур из-за низкой теплопроводности, но имеют преимущества — повышенную теплостойкость (1000 °C) и низкую схватываемость с обрабатываемыми материалами, благодаря чему не склонны к наростообразованию при резании. Поэтому их рекомендуют использовать для чистового и получистового точения, фрезерования. По назначению относятся к группе Р классификации ИСО. Свойства твёрдых сплавов Пластинки из твердого сплава имеют HRA 86-92 обладают высокой износостойкостью и красностойкостью (800—1000 °C), что позволяет вести обработку со скоростями резания до 800 м/мин. Спечённые твёрдые сплавы Твердые сплавы изготавливают путем спекания смеси порошков карбидов и кобальта. Порошки предварительно изготавливают методом химического восстановления (1-10 мкм), смешивают в соответствующем соотношении и прессуют под давлением 200—300 кгс/см², а затем спекают в формах, соответствующих размерам готовых пластин, при температуре 1400—1500 °C, в защитной атмосфере. Термической обработке твердые сплавы не подвергаются, так как сразу же после изготовления обладают требуемым комплексом основных свойств. Композиционные материалы, состоящие из металлоподобного соединения, цементированного металлом или сплавом. Их основой чаще всего являются карбиды вольфрама или титана, сложные карбиды вольфрама и титана (часто также и тантала), карбонитрид титана, реже — другие карбиды, бориды и т. п. В качестве матрицы для удержания зерен твердого материала в изделии применяют так называемую «связку» — металл или сплав. Обычно в качестве «связки» используют кобальт (кобальт является нейтральным элементом по отношению к углероду, он не образует карбиды и не разрушает карбиды других элементов), реже — никель, его сплав с молибденом (никель-молибденовая связка).