Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
zaochniki_zadachi_chast_2_2.doc
Скачиваний:
14
Добавлен:
24.09.2019
Размер:
2.52 Mб
Скачать

Волновая оптика Интерференция света

Скорость в среде

,

где с – скорость света в вакууме; n – абсолютный показатель преломления среды.

Оптическая длина пути световой волны

,

где l – геометрическая длина пути световой волны в среде с показателем преломления n.

Оптическая разность хода двух световых волн

.

Оптическая разность хода световых волн, отраженных от верхней и нижней поверхностей тонкой плоскопараллельной пластинки или пленки, находящейся в воздухе (рис. 1,а),

, или ,

где d – толщина пластинки (пленки); ε1 – угол падения; ε2 – угол преломления.

Второе слагаемое в формулах учитывает изменение оптической длины пути световой волны на λ/2 при отражении ее от среды оптически более плотной.

В проходящем свете (рис. 1,б) отражение световой волны происходит от менее плотной оптической среды и дополнительной разности хода световых лучей не возникает.

ε1

ε1

ε2

ε2

Связь разности фаз Δφ колебаний с оптической разностью хода волн

.

Условие максимумов интенсивности света при интерференции

, .

Условие минимумов интенсивности света при интерференции

.

Радиусы светлых колец Ньютона в отраженном свете (или темных в проходящем)

,

где k – номер кольца (k=1,2,3,…); R – радиус кривизны поверхности линзы, соприкасающейся с плоскопараллельной стеклянной пластинкой.

Радиусы темных колец Ньютона в отраженном свете (или светлых в проходящем)

.

Дифракция света

Радиус k-й зоны Френеля:

- для сферической волны

,

где a – расстояние диафрагмы с круглым отверстием от точечного источника света; b - расстояние диафрагмы от экрана, на котором ведется наблюдение дифракционной картины; k – номер зоны Френеля; λ – длина волны;

- для плоской волны

.

Дифракция света на одиночной щели при нормальном падении лучей. Условие минимумов интенсивности света

, ,

где а – ширина щели; φ – угол дифракции; k – номер минимума.

Условие максимумов интенсивности света

, ,

где φ/ – приближенное значение угла дифракции.

Дифракция света на дифракционной решетке при нормальном падении лучей. Условие главных максимумов интенсивности

,

где d – период (постоянная) решетки; k – номер главного максимума; φ – угол между нормалью к поверхности решетки и направлением дифрагированных волн.

Разрешающая сила дифракционной решетки

,

где Δλ – наименьшая разность длин волн двух соседних спектральных линий (λ и λ+Δλ), при которой эти линии могут быть видны раздельно в спектре, полученном посредством данной решетки; N – число штрихов решетки; k – порядковый номер дифракционного максимума.

Угловая дисперсия дифракционной решетки

.

Линейная дисперсия дифракционной решетки

.

Для малых углов дифракции

,

где f – главное фокусное расстояние линзы, собирающей на экране дифрагирующие волны.

Формула Вульфа – Брэгга

,

где d – расстояние между атомными плоскостями.

Квантовая физика Тепловое излучение

Закон Стефана – Больцмана

,

где Rэ- энергетическая светимость абсолютно черного тела; Т – термодинамическая температура; σ=5,67∙10-8 Вт/(м2∙К4) – постоянная Стефана – Больцмана.

Энергетическая светимость серого тела

,

где αТ - коэффициент черноты серого тела.

Закон смещения Вина

,

где λm – длина волны, на которую приходится максимум спектральной плотности энергетической светимости абсолютно черного тела; b=2,9∙10-3 м∙К – постоянная Вина.

Зависимость максимальной спектральной плотности энергетической светимости от температуры

,

где С=1,3∙105 Вт/(м3∙К5).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]