Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Первые вопросы.docx
Скачиваний:
9
Добавлен:
24.09.2019
Размер:
122.37 Кб
Скачать

7) Постулаты теории относительности Эйнштейна. Достоинства и недостатки постулативного метода.

В основе специальной теории относительности лежат постулаты Эйнштейна, сфор­мулированные им в 1905 г.

I. Принцип относительности: никакие опыты (механические, электрические, оптичес­кие), проведенные внутри данной инерциальной системы отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной систе­мы отсчета к другой.

П. Принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.

Первый постулат Эйнштейна, являясь обобщением механического принципа относительности Галилея на любые физические процессы, утверждает, таким образом, что физические законы инвариантны по отношению к выбору инерциальной системы отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Согласно этому постулату, все инерциальные системы от­счета совершенно равноправны, т. е. явления (механические, электродинамические, оптические и др.) во всех инерциальных системах отсчета протекают одинаково.

Согласно второму постулату Эйнштейна, постоянство скорости света — фундаментальное свойство природы, которое констатируется как опытный факт.

Специальная теория относительности потребовала отказа от привычных представ­лений о пространстве и времени, принятых в классической механике, поскольку они противоречили принципу постоянства скорости света. Потеряло смысл не только абсолютное пространство, но и абсолютное время.

Постулаты Эйнштейна и теория, построенная на их основе, установили новый взгляд на мир и новые пространственно-временные представления, такие, например, как относительность длин и промежутков времени, относительность одновременности событий. Эти и другие следствия из теории Эйнштейна находят надежное эксперимен­тальное подтверждение, являясь тем самым обоснованием постулатов Эйнштей­на — обоснованием специальной теории относительности.

Такой постулативный способ решения проблемы может быть оправдан и вполне эффективен, - но лишь только в том случае, когда рациональное решение поставленной проблемы действительно не возможно. Тогда мы просто говорим: "Таково положение дел, оно парадоксально, но мы должны смириться с этой парадоксальностью".

8) Механика как основа физики. Основные законы и понятия механики.

Меха́ника — область физики, изучающая движение материальных объектов и взаимодействие между ними. Важнейшими разделами механики являются классическая механика, релятивистская механика и квантовая механика.

Кинематика

Кинематика — изучает геометрические свойства движения тел без учета их масс и действующих на них сил. Рассматривает движение тел без выяснения причин этого движения.

  • Материальная точка — тело, размерами и формой которого в данных условиях можно пренебречь.

  • Тело отсчета — тело, относительно которого рассматривают движение.

  • Система отсчёта — совокупность тела отсчёта, связанной с ним системы координат и часов.

  • Часы — устройство, в котором протекает периодический процесс, положенный в основу отсчета времени.

  • Траектория движения материальной точки — линия, описываемая этой точкой в пространстве. В зависимости от формы траектории движение может быть прямолинейным или криволинейным.

  • Вектор перемещения — вектор, начальная точка которого совпадает с начальной точкой движения, конец вектора — с конечной.

  • Путь — сумма длин всех участков траектории, пройденных точкой за определенное время.

  • Средняя скорость — отношение модуля вектора перемещения к промежутку времени, в течение которого это перемещение произошло.

  • Мгновенная скорость (скорость) — предел отношения вектора перемещения к промежутку времени, за который это перемещение произошло, при стремлении длительности промежутка времени к нулю.

  • Ускорение — характеристика степени неравномерности движения. Определяет быстроту изменения скорости по модулю и направлению.

  • Закон сложения скоростей: абсолютная скорость материальной точки равна векторной сумме переносной и относительной скоростей.

  • Среднепутевая скорость — отношение пройденного пути к соответствующему промежутку времени.

Вращательное движение тела вокруг неподвижной направленной оси

Вращательное движение тела вокруг неподвижной направленной оси — движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой хх, называемой осью вращения.

  • Угловое перемещение — векторная величина, характеризующая изменение угловой координаты в процессе её движения.

  • Угловая скорость — векторная величина, характеризующая быстроту вращения материальной точки. Вектор направлен вдоль оси вращения таким образом, чтобы, смотря с его конца, вращение казалось происходящим против часовой стрелки.

  • Период вращения (Т) — время, за которое вращающееся тело совершает один полный оборот.

  • Частота вращения — число полных оборотов, совершаемых при равномерном движении, в единицу времени.

  • Плоское движение — движение плоского тела, при котором все точки тела движутся в некоторой фиксированной плоскости пространства, условно считаемой неподвижной.

Первый закон Ньютона

Первый закон Ньютона:В мире существуют такие системы отсчета, в которых изолированная материальная точка сохраняет состояние покоя или равномерно-прямолинейно движется. Такие системы отсчета называются инерциальными.

Второй закон Ньютона

Второй закон Ньютона: в инерциальных системах отсчета ускорение материальной точки прямо пропорционально векторной сумме сил, действующих на материальную точку, и обратно пропорционально её массе.

Третий закон Ньютона

Третий закон Ньютона: в инерциальных системах отсчета всякое действие одной (первой) материальной точки на другую (вторую), сопровождается воздействием второй материальной точки на первую, т.е имеет характер взаимодействия; силы, с которыми взаимодействуют материальные точки, всегда равны по модулю, противоположно направлены, действуют вдоль прямой, соединяющей эти точки, являются силами одной природы и приложены к разным материальным точкам.

Принцип относительности Галилея

Принцип относительности Галилея: никакими механическими опытами, проводимыми внутри данной инерциальной системы, нельзя установить, покоится эта система или находится в равномерном и прямолинейном движении. Во всех инерциальных системах отсчета законы механики одинаковы.

  • Вес тела — сила, с которой тело давит на опору.

Закон Гука

Закон Гука: при достаточно малых деформациях сила упругости пропорциональна величине деформации тела и направлена в сторону, противоположную деформации.

Импульс

  • Импульс тела (материальной точки) — векторная величина, равная произведению массы тела (материальной точки) на её скорость.

  • Импульс системы тел (материальных точек) — векторная сумма импульсов всех точек.

  • Импульс силы — произведение силы на время её действия (или интеграл по времени, если сила изменяется со временем).

  • Закон сохранения импульса: в инерциальной системе отсчета импульс замкнутой системы сохраняется.

  • Изменение импульса системы материальных точек — в инерциальной системе отсчета скорость изменения импульса механической системы равна векторной сумме внешних сил, действующих на материальные точки системы.

Центр масс

Центр масс — воображаемая точка С, положение которой характеризует распределение масс этой системы.

  • Закон движения центра масс — в инерциальных системах отсчёта центр масс системы движется как материальная точка, в которой находится масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, действующих на систему.

; ;

  • Система центра масс — система отсчёта, относительно которой центр масс механической системы неподвижен.

Работа, мощность, энергия

  • Работа силы равна произведению модуля силы на перемещение и на косинус угла между ними.

  • Мощность — отношение работы ко времени, за которое эта работа была совершена.

  • Кинетическая энергия — величина, равная половине произведения массы тела на квадрат его скорости.

  • Величину, равную произведению масы тела на g на высоту тела над поверхностью Земли, называют потенциальной энергией тела в поле силы тяжести.

  • Консервативные силы — силы, работа которых не зависит от пути, пройденного материальной точкой. Зависит только от перемещения.

  • Механическая энергия системы — величина, равная сумме кинетической и потенциальной энергий системы.

  • В замкнутой системе, в которой действуют только консервативные силы, механическая энергия сохраняется.

  • Вторая космическая скорость — скорость, необходимая материальной точке, чтобы покинуть поле тяготения Земли и стать спутником Солнца.