Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математический анилиз.docx
Скачиваний:
3
Добавлен:
24.09.2019
Размер:
1.34 Mб
Скачать

Скалярное поле

Если каждой точке M некоторой области некоторого пространства (чаще всего подразумевается, что размерность этого пространства больше единицы) поставлено в соответствие некоторое (обычно — действительное) число u, то говорят, что в этой области задано скалярное поле. Другими словами, скалярное поле — это функция, отображающая Rn в R (скалярная функция точки пространства). Точка пространства при этом на практике может быть указана или просто символически, или с помощью вектора (если пространство может быть представлено как векторное) или набором координат.

Векторое поле Векторное поле — это отображение, которое каждой точке рассматриваемого пространства ставит в соответствие вектор с началом в этой точке. Например, вектор скорости ветра в данный момент времени изменяется от точки к точке и может быть описан векторным полем.

Операции

Градиент

Для случая трёхмерного пространства градиентом скалярной функции координат , , называется векторная функция с компонентами

, , .

Дивергенция

где ФF — поток векторного поля F через сферическую поверхность площадью S, ограничивающую объём V. Ещё более общим, а потому удобным в применении, является определение, когда форма области с поверхностью S и объёмом V допускается любой. Единственным требованием является её нахождение внутри сферы радиусом, стремящимся к нулю (то есть чтобы вся поверхность находилась в бесконечно малой окрестности данной точки, что нужно, чтобы дивергенция была локальной операцией и для чего очевидно недостаточно стремления к нулю площади поверхности и объёма ее внутренности). В обоих случаях подразумевается, что

.

Допустим, что векторное поле дифференцируемо в некоторой области. Тогда в трёхмерном декартовом пространстве дивергенция будет определяться выражением

Это же выражение можно записать с использованием оператора набла

Многомерная, а также двумерная и одномерная, дивергенция определяется в декартовых координатах в пространствах соответствующей размерности совершенно аналогично (в верхней формуле меняется лишь количество слагаемых, а нижняя остается той же, подразумевая оператор набла подходящей размерности).

Ротор

Ротор векторного поля  — есть вектор, проекция которого на каждое направление n есть предел отношения циркуляции векторного поля по контуру L, являющемуся краем плоской площадки ΔS, перпендикулярной этому направлению, к величине этой площадки, когда размеры площадки стремятся к нулю, а сама площадка стягивается в точку:

.

Направление обхода контура выбирается так, чтобы, если смотреть в направлении , контур L обходился по часовой стрелке[4].

В трёхмерной декартовой системе координат ротор (в соответствии с определением выше) вычисляется следующим образом (здесь F - обозначено некое векторное поле с декартовыми компонентами , а - орты декартовых координат):

или

Оператор Гамильтона

Опера́тор на́бла (оператор Гамильтона) — векторный дифференциальный оператор, обозначаемый символом (набла) (в Юникоде U+2207, ∇). Для трёхмерного евклидова пространства в прямоугольных декартовых координатах[1] оператор набла определяется следующим образом:

,

где  — единичные векторы по осям x, y, z.

Оператор Лапласа.

Опера́тор Лапла́са (лапласиа́н, оператор дельта) — дифференциальный оператор, действующий в линейном пространстве гладких функций и обозначаемый символом . Функции он ставит в соответствие функцию .

Оператор Лапласа эквивалентен последовательному взятию операций градиента и дивергенции: , таким образом, значение оператора Лапласа в точке может быть истолковано как плотность источников (стоков) потенциального векторного поля в этой точке. В декартовой системе координат оператор Лапласа часто обозначается следующим образом , то есть в виде скалярного произведения оператора набла на себя. Оператор Лапласа унитарен.

Длина кривой (дуги кривой) – это предел, к которому стремятся длины вписанных в эту кривую (дугу) ломаных при неограниченном увеличении числа их звеньев, когда длина наибольшего звена стремится к нулю.

Определение. Если множество  длин вписанных в кривую L ломаных, отвечающих всевозможным разбиением Т [ ] ограничено, то кривая L называется спрямляемой. Точная верхняя грань l множества  называется длиной дуги кривой L.

Площадь поверхностей

Проще всего определяется площадь многогранных поверхностей: как сумма площадей их плоских граней.

Чаще всего площадь поверхности определяют для класса кусочно гладких поверхностей с кусочно гладким краем (или без края). Обычно это делают с помощью следующей конструкции. Поверхность разбивают на мелкие части с кусочно гладкими границами: в каждой части выбирают точку, в которой существует касательная плоскость, и ортогонально проектируют рассматриваемую часть на касательную плоскость поверхности в выбранной точке; площадь полученных плоских проекций суммируют; наконец, переходят к пределу при всё более мелких разбиениях (таких, что наибольший из диаметров частей разбиения стремится к нулю). На указанном классе поверхностей этот предел всегда существует,

Потенциальное векторное поле – поле где ротор равен нулю.

Векторное поле называется соленоидальным, если через любую замкнутую поверхность S его поток равен нулю:

.

Если это условие выполняется для любых замкнутых S в некоторой области (по умолчанию - всюду), то это условие равносильно тому, что равна нулю дивергенция векторного поля :

Критерий спрямляемости

Линия спрямляема тогда и только тогда когда функция которая ее задает – функция с ограниченой вариацией.

Критерий Дарбу.

Особо не меняется просто находим нижние и верхние суммы Дарбу

Где mi-точная нижняя грань функции вдоль линии, Mi-точная верхняя грань функции вдоль линии

Переходим к пределу: = <=> существует

Теорема о вычислении криволинейного интеграла

  1. если L- кусочно-гладкая кривая.

  2. Функция f(x)- кусочнo-непрерывна вдоль кривой L То существует криволинейный интеграл первого рода и справедливо равенство.

Теорема о вычислении поверхностных интегралов первого рода.

g11= g22= g12=

Криволинейные интегралы 2-го роды в R2

Вычисление

Формула Грина

Независимость интеграла от пути.

Пусть в области D заданы непрерывные функции P(x,y) и Q(х,y) и M0M - гладкая дуга, лежащая в области D.

Рассмотрим вопрос о независимости интеграла

от формы пути интегрирования. Имеет место следующая теорема.

Теорема 3.3. Пусть функции P, Q, P'y, Q'x определены и непрерывны в односвязной, ограниченной замкнутой области D плоскости Оху. Тогда следующие четыре условия равносильны между собой: 1)

, где L - замкнутый контур в области D; 2) интеграл

не зависит от формы пути интегрирования, а зависит лишь от положения точек M0 и М; 3) Pdx + Qdy = dU - полный дифференциал некоторой функции U(x,y); 4)

в каждой точке области D.

Идея доказательства этой теоремы: показывается, что из условия 1 условие 2 условие 3 условие 4 условие 1.

Интегрирование полных дифференциалов

Предположим, что выражение есть полный дифференциал функции . В соответствии с доказательствами условий независимости криволинейного интеграла от выбора пути можно заключить, что большое количество функций, которые удовлетворяют условию представляют собой

 

 

Для того, чтобы определить функцию , за путь интегрирования можно принять, допустим, , здесь и представлены в качестве отрезков, которые являются параллельными осям координат (рис. 26.7). В этом случае

Учитывая то, что

 

имеем

 

(26.6)

Восстановление функции по ее полному дифференциалу.