
- •1 Определение производной. Геометрический смысл
- •2 Уравнения касательной и нормали к кривой
- •3 Правая и левая производная
- •4 Дифференцируемость функции
- •5 Непрерывность дифференцируемой функции
- •6 Дифференциал функции. Геометрический смысл Понятие дифференциала
- •7 Дифференцируемость суммы, произведения, частного
- •8 Дифференцируемость сложной функции
- •9 Инвариантность формы дифференциала
- •10 Понятие обратной функции. Производная обратной функции
- •12. Дифференциал высшего порядка
- •13Дифференцирование функций заданных параметрически
- •14. Теорема Ролля
- •]История
- •16. Теорема Коши о среднем значении
- •]Отношение бесконечно больших
- •]Примеры
- •18. Формула Тейлора — Пеано
- •19. Признак возрастания (убывания) функции.
- •20. Экстремум
- •[Определения
- •]Замечание
- •[]Необходимые условия существования локальных экстремумов
- •]Достаточные условия существования локальных экстремумов
- •21. Достаточное условие экстремума
- •1) Первое достаточное условие:
- •2) Второе достаточное условие
- •3) Третье достаточное условие
- •22Нахождение наибольшего и наименьшего значений непрерывной функции на отрезке
- •24. Асимптота
- •Виды асимптот графиков ]Вертикальная
- •]Горизонтальная
- •]Наклонная
- •]Свойства первообразной
- •]Техника интегрирования
- •]Другие определения
- •26. Свойства неопределённого интеграла
- •28. Интегрирование по частям
- •]Получение формул ]Для неопределённого интеграла
- •]Для определённого интеграла
- •]Примеры
- •29. Интегрирование рациональных функций
- •30 Интегрирование простейших дробей.
- •Интегрирование простейших дробей первого типа
- •Интегрирование простейших дробей второго типа
- •Интегрирование простейших дробей третьего типа
- •Интегрирование простейших дробей четвертого типа
- •31 Интегрирование иррациональных функций
- •Определение
- •Свойства
- •Геометрический смысл
- •36 . 11.2. Свойства определённого интеграла.
- •37. Теорема о среднем в определённом интеграле
- •]Доказательство
- •39. Теорема Ньютона — Лейбница
- •]История
- •41. Интегрирование по частям
- •]Получение формул ]Для неопределённого интеграла
- •]Для определённого интеграла
- •]Примеры
- •42. Вычисление площадей плоских фигур
- •]Длина дуги как параметр
13Дифференцирование функций заданных параметрически
До сих пор функция записывалась в явном виде y= f(x) и в неявном F(x,y)=0. Но существует еще третий вид аналитического представления функции - это представление её в па раметрической форме в виде двух уравнений
где t -
вспомогательная переменная,
называемая параметром.
Заметим,
что функция может быть представлена в
параметрической форме различными
способами.
Например, функция,
записанная в неявном виде x2 +
y2 =
1 может
быть представлена в явном виде:
и
в параметрической форм е:
Заметим, что x2 + y2 = 1 есть уравнение окружности единичного радиуса с центром в начале координат. В первом параметрическом представлении уравнения x2 + y2 = 1 параметр t изменяется от -1 до +1 и равен абциссе подвижной точки окружности, во втором случае параметр t изменяется от 0 до 2p и равен углу, образованному радиусом подвижной точки и осью Ox. Если функция задана в явном виде y=f(x), то всегда можно записать её в неявном виде y-f(x)=0, а также в параметрической форме
От вида F(x,y)=0 не всегда возможно перейти к виду y=f(x) или x=(y), так как уравнение F(x,y)=0 может оказаться неразреш имым относительно y или x . Лего перейти от параметрического представления функции к уравнению вида y=f(x). Для этого из первого уравнения x=x(t) нужно найти t=t(x), если конечно это возможно , и подставить его во второе уравнение y=y(t)
y=y[t(x)]=f(x)
От параметрического представления функции к уравнению вида F(x,y)=0 можно прийти путем исключения параметра t, если это возможно. Уравнения y=f(x) и F(x, y)=0 служат различными аналитическими представлениями одной и той же функции F[x, f(x)]=0. Параметрические уравнения
и уравнение F(x, y)=0 представляют одну и ту же функцию, если F(x(t), y(t))=0. Наконец, параметрические уравнения определяют ту же функцию, что и уравнение y=f(x), если
y(t)=f [ x(t) ].
Найдем производную функции y по x в случае, когда она задана в параметрическом виде. Для этого будем рассматривать t как функцию от x. То есть t=t(x). Тогдаy=y[t(x)]. Продифференцируем y как сложную функцию от x, т.е. по формуле
и применим формулу, связывающую производные обратных функций:
Введя обозначения
,
получим
Пример.
Теперь найдем вторую производную от функции, заданной в параметрической форме. Из предидущего уравнения и определения второй производной следует, что
но
Следовательно
где
14. Теорема Ролля
Теорема Ро́лля (теорема о нуле производной) утверждает, что
-
Если вещественная функция непрерывна на отрезке
и дифференцируема на интервале
, принимает на концах этого интервала одинаковые значения, то на этом интервале найдётся хотя бы одна точка, в которой производная функции равна нулю.
Доказательство
Геометрический смысл теоремы Ролля
]Геометрический смысл
Теорема утверждает, что если ординаты обоих концов гладкой кривой равны, то на кривой найдется точка, в которой касательная к кривой параллельна оси абсцисс.
]Следствие
Если непрерывная функция
обращается в ноль в
различных
точках, то ее производная обращается в
ноль по крайней мере в
различных
точках[1],
причем эти нули производной лежат в
выпуклой оболочке нулей исходной
функции. Это следствие легко проверяется
для случая действительных корней, однако
имеет место и в комплексном случае.
15. Теорема Лагранжа (теория групп)
Теорема Лагра́нжа в теории групп гласит:
-
Пусть группа G конечна и H — её подгруппа. Тогда порядок G равен порядку H, умноженному на количество её левых или правыхклассов смежности (индекс).
Следствия
Количество правых и левых смежных классов любой подгруппы
в
одинаково и называется индексом подгруппы в (обозначается
).
Порядок любой подгруппы конечной группы делит порядок .
Из того, что порядок элемента группы равен порядку циклической подгруппы, образованной этим элементом, следует, что порядок любого элемента конечной группы делит порядок . Это следствие обобщает теорему Эйлера и малую теорему Ферма в теории чисел.
Группа порядка
, где — простое число, циклична. (Поскольку порядок элемента, отличного от единицы, не может быть равен 1, все элементы, кроме единицы, имеют порядок , и значит, каждый из них порождает группу.)