Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
естествознание экзамен.docx
Скачиваний:
4
Добавлен:
24.09.2019
Размер:
234.97 Кб
Скачать

СТРОЕНИЕ РАСТИТЕЛЬНОЙ КЛЕТКИ

Растительная клетка состоит из более или менее жесткой клеточной оболочки и протопласта. Клеточная оболочка – это клеточная стенка и цитоплазматическая мембрана. Термин протопласт происходит от слова протоплазма, которое долгое время использовалось для обозначения всего живого. Протопласт – это протоплазма индивидуальной клетки.

Протопласт состоит из цитоплазмы и ядра. В цитоплазме находятся органеллы (рибосомы, микротрубочки, пластиды, митохондрии) и мембранные системы (эндоплазматический ретикулум, диктиосомы). Цитоплазма включает в себя еще цитоплазматический матрикс (основное вещество) в которое погружены органеллы и мембранные системы. От клеточной стенки цитоплазма отделена плазматической мембраной, которая представляет собой элементарную мембрану. В отличие от большинства животных клеток растительные клетки содержат одну или несколько вакуолей. Это пузырьки, заполненные жидкостью и окруженные элементарной мембраной (тонопластом).

В живой растительной клетке основное вещество находится в постоянном движении. В движение, называемое током цитоплазмы или циклозом, вовлекается органеллы. Циклоз облегчает передвижение веществ в клетке и обмен ими между клеткой и окружающей средой.

Плазматическая мембрана. Представляет собой бислойную фосфолипидную структуру. Для растительных клеток свойственны впячивания плазматической мембраны.

Плазматическая мембрана выполняет следующие функции:

-участвует в обмене веществ между клеткой и окружающей средой;

-координирует синтез и сборку целлюлозных микрофибрилл клеточной стенки;

-передает гормональные и внешние сигналы, контролирующие рост и дифференцировку клеток.

Ядро. Это наиболее заметная структура в цитоплазме эукариотической клетки. Ядро выполняет две важные функции:

-контролирует жизнедеятельность клетки, определяя, какие белки, и в какое время должны синтезироваться;

-хранит генетическую информацию и передает её дочерним клеткам в процессе клеточного деления.

Ядро эукариотической клетки окружено двумя элементарными мембранами, образующие ядерную оболочку. Она пронизана многочисленными порами диаметром от 30 до 100 нм, видимыми только в электронный микроскоп. Поры имеют сложную структуру. Наружная мембрана ядерной оболочки в некоторых местах объединяется с эндоплазматическим ретикулумом. Ядерную оболочку можно рассматривать как специализированную, локально дифференцированную часть эндоплазматического ретикулума (ЭР).

В окрашенном специальными красителями ядре можно различить тонкие нити и глыбки хроматина и нуклеоплазму (основное вещество ядра). Хроматин состоит из ДНК, связанной со специальными белками – гистонами. В процессе клеточного деления хроматин все более уплотняется и собирается в хромосомы. В ДНК закодирована генетическая информация.

Организмы различаются по числу хромосом в соматических клетках. Например, капуста имеет – 20 хромосом; подсолнечник – 34; пшеница – 42; человек – 46, а один из видов папоротника Ophioglossum1250. Половые клетки (гаметы) имеют только половину количества хромосом, характерных для соматических клеток организма. Число хромосом в гаметах называют гаплоидным (одинарным), в соматических клетках – диплоидным (двойным). Клетки, имеющие более двух наборов хромосом, называются полиплоидными.

Под световым микроскопом можно рассмотреть сферические структуры – ядрышки. В каждом ядре имеется одно или несколько ядрышек, которые заметны в неделящихся ядрах. В ядрышках синтезируются рибосомные РНК. Обычно в ядрах диплоидных организмов имеется два ядрышка по одному для каждого гаплоидного набора хромосом. Ядрышки не имеют собственной мембраны. Биохимически ядрышки характеризуются высокой концентрацией РНК, которая здесь связана с фосфопротеидами. Размер ядрышек зависит от функционального состояния клетки. замечено, что у быстро растущей клетки, в которой идут интенсивные процессы синтеза белка, ядрышки увеличиваются в размерах. В ядрышках продуцируются иРНК и рибосомы, выполняющие синтетическую функцию только в ядре.

Нуклеоплазма (кариоплазма) представлена гомогенной жидкостью, в которой растворены различные белки, в том числе и ферменты.

Пластиды. Вакуоли, целлюлозная клеточная стенка и пластиды – характерные компоненты растительных клеток. Каждая пластида имеет собственную оболочку, состоящую из двух элементарных мембран. Внутри пластиды различают мембранную систему и различной степени гомогенное вещество – строму. Зрелые пластиды классифицируют на основании содержащихся в них пигментов.

Хлоропласты, в которых протекает фотосинтез, содержат хлорофиллы и каротиноиды. Обычно имеют форму диска диаметром 4 – 5 мкм. В одной клетке мезофилла (середина листа) может находиться 40 – 50 хлоропластов; в мм2 листа – около 500 000. в цитоплазме хлоропласты обычно располагаются параллельно клеточной оболочке.

Внутренняя структура хлоропласта сложная. Строма пронизана развитой системой мембран, имеющих форму пузырьков – тилакоидов. Каждый тилакоид состоит из двух мембран. Тилакоиды образуют единую систему. Как правило, они собраны в стопки - граны, напоминающие столбики монет. Тилакоиды отдельных гран связаны между собой тилакоидами стромы, или межгранными тилакоидами. Хлорофиллы и каротиноиды встроены в тилакоидные мембраны. Хлоропласты зеленых растений и водорослей часто содержат зерна крахмала и мелкие липидные (жировые) капли. Крахмальные зерна - -это временные хранилища продуктов фотосинтеза. Они могут исчезнуть из хлоропластов растения, находящегося в темноте всего лишь 24 ч, и появиться вновь через 3 – 4 ч после переноса растения на свет.

Хлоропласты – полуавтономные органеллы и напоминают бактерии. Например, рибосомы бактерий и хлоропластов имеют достаточно высокое сходство. Они меньше рибосом эукариот. Синтез белка на рибосомах бактерий и хлоропластов подавляется хлорамфениколом, не оказывающего влияния в клетках эукариот. Кроме того, и бактерии и хлоропласты имеют схожего типа нуклеоиды, организованные сходным образом. Несмотря на то, что образование хлоропластов и синтез находящихся в них пигментов в значительной степени контролируется хромосомной ДНК клетки, тем не менее в отсутствие собственной ДНК хлоропласты не формируются.

Хлоропласты можно считать основными клеточными органеллами, так как они стоят первыми в цепи преобразования солнечной энергии, в результате которого человечество получает, и пищу и топливо. В хлоропластах протекает не только фотосинтез. Они участвуют и в синтезе аминокислот и жирных кислот, служат хранилищем временных запасов крахмала.

Хромопласты – пигментированные пластиды. Многообразные по форме они не имеют хлорофилла, но синтезируют и накапливают каротиноиды, которые придают жёлтую, оранжевую, красную окраску цветкам, старым листьям, плодам и корням. хромопласты могут развиваться из хлоропластов, которые при этом теряют хлорофилл и внутренние мембранные структуры, накапливают каротиноиды. Это происходит при созревании многих плодов. Хромопласты привлекают насекомых и других животных, с различных веществ, в том числе липидов и белков. На свету лейкопласты превращаются в хлоропласты.

Пропластиды – мелкие бесцветные или бледно-зеленые недифференцированные пластиды, которые находятся в меристематических (делящихся) клетках корней и побегов. Они являются предшественниками других, более дифференцированных пластид - хлоропластов, хромопластов и аминопластов. Если развитие протопластид задерживается из-за отсутствия света, в них может появиться одно или несколько проламмелярных телец, представляющих собой полукристаллические скопления трубчатых мембран. Пластиды, содержащие проламеллярные тельца, называются этиопластами. На свету этиопласты превращаются в хлоропласты, при этом мембраны проламеллярных телец формируют тилакоиды. Этиопласты образуются в листьях растений, находящихся в темноте. протопласты зародышей семян вначале превращаются в этиопласты, из которых на свету затем развиваются хлоропласты. Для пластид характерны относительно легкие переходы от одного типа к другому. Пластиды, как и бактерии размножаются делением надвое. В меристематических клетках время деления протопластид приблизительно совпадает с временем деления клеток. Однако в зрелых клетках большая часть пластид образуется в результате деления зрелых пластид.

Митохондрии. Как и хлоропласты, митохондрии окружены двумя элементарными мембранами. Внутренняя мембрана образует множество складок и выступов – крист, которые значительно увеличивают внутреннюю поверхность митохондрии. Они значительно меньше, чем пластиды, имеют около 0,5 мкм в диаметре и разнообразны по длине и форме.

В митохондриях осуществляется процесс дыхания, в результате которого органические молекулы расщепляются с высвобождением энергии и передачей её молекулам АТФ, основного резерва энергии всех эукариотических клеток. Большинство растительных клеток содержит сотни и тысячи митохондрий. Их число в одной клетке определяется потребностью клетки в АТФ. Митохондрии находятся в постоянном движении, перемещаясь из одной части клетки в другую, сливаясь друг с другом делятся. Митохондрии обычно собираются там, где нужна энергия. Если плазматическая мембрана активно переносит вещества из клетки в клетку, то митохондрии располагаются вдоль поверхности мембраны. У подвижных одноклеточных водорослей митохондрии скапливаются у оснований жгутиков, поставляя энергию, необходимую для их движения.

Митохондрии, как и пластиды, являются полуавтономными органеллами, содержащими компонентами, необходимые для синтеза собственных белков. Внутренняя мембрана окружает жидкий матрикс, в котором находятся белки, РНК, ДНК, рибосомы, сходные с бактериальными и различные растворенные вещества. ДНК существует в виде кольцевых молекул, располагающихся в одном или нескольких нуклеоидах.

На основании сходства бактерий с митохондриями и хлоропластами эукариотических клеток можно предположить, что митохондрии и хлоропласты произошли от бактерий, которые нашли «убежище» в более крупных гетеротрофных клетках - предшественниках эукариот.

Микротельца. В отличие от пластид и митохондрий, которые отграничены двумя мембранами, микротельца представляют собой сферические органеллы, окруженные одной мембраной. Микротельца имеют гранулярное (зернистое) содержимое, иногда в них встречаются и кристаллические белковые включения. Микротельца связаны с одним или двумя участками эндоплазматического ретикулума.

Некоторые микротельца, называемые проксисомами, играют важную роль в метаболизме гликолевой кислоты, имеющем непосредственное отношение к фотодыханию. В зеленых листьях они связаны с митохондриями и хлоропластами. Другие микротельца, называемые, глиоксисомами, содержат ферменты, необходимые для превращения жиров в углеводы. Это происходит во многих семенах во время прорастания.

Вакуоли – это отграниченные мембраной участки клетки, заполненные жидкостью – клеточным соком. Они окружены тонопластом (вакуолярной мембраной).

Молодая растительная клетка содержит многочисленные мелкие вакуоли, которые по мере старения клетки сливаются в одну большую. В зрелой клетке вакуолью может быть занято до 90% её объема. При этом цитоплазма прижата в виде тонкого периферического слоя к клеточной оболочке. Увеличение размера клетки в основном происходит за счет роста вакуоли. В результате этого возникает тургорное давление и поддерживается упругость ткани. В этом заключается одна из основных функций вакуоли и тонопласта.

Основной компонент сока – вода, остальные варьируют в зависимости от типа растения и его физиологического состояния. Вакуоли содержат соли, сахара, реже белки. Тонопласт играет активную роль в транспорте и накоплении в вакуоли некоторых ионов. Концентрация ионов в клеточном соке может значительно превышать ее концентрацию в окружающей среде. При высоком содержании некоторых веществ в вакуолях образуются кристаллы. Чаще всего встречаются кристаллы оксалата кальция, имеющие различную форму.

Вакуоли – места накопления продуктов обмена веществ (метаболизма). Это могут быть белки, кислоты и даже ядовитые для человека вещества (алкалоиды). Часто откладываются пигменты. Голубой, фиолетовый, пурпурный, темно-красный, пунцовый придают растительным клеткам пигменты из группы антоцианов. В отличие от других пигментов они хорошо растворяются в воде и содержатся в клеточном соке. Они определяют красную и голубую окраску многих овощей (редис, турнепс, капуста), фруктов (виноград, сливы, вишни), цветов (васильки, герани, дельфиниумы, розы, пионы). Иногда эти пигменты маскируют в листьях хлорофилл, например, у декоративного красного клена. Антоцианы окрашивают осенние листья в ярко-красный цвет. Они образуются в холодную солнечную погоду, когда в листьях прекращается синтез хлорофилла. В листьях, когда антоцианы не образуются, после разрушения хлорофилла заметными становятся желто-оранжевые каротиноиды хлоропластов. Наиболее ярко окрашены листья холодной ясной осенью.

Вакуоли участвуют в разрушении макромолекул, в круговороте их компонентов в клетке. Рибосомы, митохондрии, пластиды, попадая в вакуоли, разрушаются. По этой переваривающей активности их можно сравнить с лизосомами – органеллами животных клеток.

Вакуоли образуются из эндоплазматической сети (ретикулума)

Рибосомы. Маленькие частицы (17 – 23нм), состоящие примерно из равного количества белка и РНК. В рибосомах аминокислоты соединяются с образованием белков. Их больше в клетках с активным обменом веществ. Рибосомы располагаются в цитоплазме клетки свободно или же прикрепляются к эндоплазматическому ретикулуму (80S). Их обнаруживают и в ядре (80S), митохондриях (70S), пластидах (70S).

Рибосомы могут образовывать комплекс, на которых происходит одновременный синтез одинаковых полипептидов, информация о которых снимается с одной молекулы и РНК. Такой комплекс называется полирибосомами (полисомами). Клетки, синтезирующие белки в больших количествах, имеют обширную систему полисом, которые часто прикрепляются к наружной поверхности оболочки ядра.

Эндоплазматический ретикулум. Это сложная трехмерная мембранная система неопределенной протяженности. В разрезе ЭР выглядит как две элементарные мембраны с узким прозрачным пространством между ними. Форма и протяженность ЭР зависят от типа клетки, ее метаболической активности и стадии дифференцировки. В клетках, секретирующих или запасающих белки, ЭР имеет форму плоских мешочков или цистерн, с многочисленными рибосомами, связанными с его внешней поверхностью. Такой ретикулум называется шероховатым эндоплазматическим ретикулумом. Гладкий ЭР обычно имеет трубчатую форму. Шероховатый и гладкий эндоплазматические ретикулумы могут присутствовать в одной и той же клетке. Как правило, между ними имеются много численные связи.

Эндоплазматический ретикулум функционирует как коммуникационная система клетки. Он связан с внешней оболочкой ядра. Фактически эти две структуры образуют единую мембранную систему. Когда ядерная оболочка во время деления клетки разрывается, ее обрывки напоминают фрагменты ЭР. Эндоплазматический ретикулум – это система транспортировки веществ: белков, липидов, углеводов, в разные части клетки. эндоплазматические ретикулумы соседних клеток соединяются через цитоплазматические тяжи – плазмодесмы – которые проходят сквозь клеточные оболочки.

Эндоплазматический ретикулум – основное место синтеза клеточных мембран. В некоторых растительных клетках здесь образуются мембраны вакуолей и микротелец, цистерны диктиосом.

Аппарат Гольджи. Этот термин используется для обозначения всех диктиосом, или телец Гольджи, в клетке. Диктиосомы – это группы плоских, дисковидных пузырьков, или цистерн, которые по краям разветвляются в сложную систему трубочек. Диктиосомы у высших растений состоят из 4 – 8 цистерн, собранных вместе.

Обычно в пачке цистерн различают формирующуюся и созревающую стороны. мембраны формирующихся цистерн по структуре напоминают мембраны ЭР, а мембраны созревающих цистерн – плазматическую мембрану.

Диктиосомы участвуют в секреции, а у большинства высших растений – в образовании клеточных оболочек. Полисахариды клеточной оболочки, синтезируемые диктиосомами, накапливаются в пузырьках, которые затем отделяются от созревающих цистерн. Эти секреторные пузырьки мигрируют и сливаются с ЦПМ; при этом содержащиеся в них полисахариды встраиваются в клеточную оболочку. Некоторые вещества, накапливающиеся в диктиосомах, образуются в других структурах, например, в ЭПР, а затем транспортируются в диктиосомы, где видоизменяются (модифицируются) перед секрецией. Например, гликопротеины – важный строительный материал клеточной оболочки. Белковая часть синтезируется полисомами шероховатого ЭПР, углеводная - в диктиосомах, где обе части объединяются, образуя гликопротеины.

Мембраны – динамические, подвижные структуры, которые постоянно изменяют свою форму и площадь. На подвижности мембран основана концепция эндоплазматической системы. Согласно этой концепции, внутренние мембраны цитоплазмы, кроме мембран митохондрий и пластид, представляют собой единое целое и берут начало от эндоплазматического ретикулума. Новые цистерны диктиосом образуются из эндоплазматического ретикулума через стадию промежуточных пузырьков, а секреторные пузырьки, отделяющиеся от диктиосом, в конечном итоге способствуют формированию плазматической мембраны. Таким образом, эндоплазматический ретикулум и диктиосомы образуют функциональное целое, в котором диктиосомы играют роль промежуточных структур в процессе преобразования мембран, подобных эндоплазматическому ретикулуму, в мембраны, подобные плазматической. В тканях, клетки которых слабо растут и делятся, постоянно происходит обновление мембранных компонентов.

Микротрубочки обнаружены практически во всех эукариотических клетках. Представляют собой цилиндрические структуры диаметром около 24 нм. Длина их варьирует. Каждая трубочка состоит из субъединиц белка, называемого тубулином. Субъединицы образуют 13 продольных нитей, окружающих центральную полость. Микротрубочки – это динамические структуры, они регулярно разрушаются и образуются на определенных стадиях клеточного цикла. Их сборка происходит в особых местах, которые называются центрами организации микротрубочек. В растительных клетках они имеют слабовыраженную аморфную структуру.

Функции микротрубочек: участвуют в образовании клеточной оболочки; направляют пузырьки диктиосом к формирующейся оболочке, подобно нитям веретена, которые образуются в делящейся клетке; играют определенную роль в формировании клеточной пластинки (первоначальной границы между дочерними клетками). Кроме того, микротрубочки – важный компонент жгутиков и ресничек, в движении которых, играют немаловажную роль.

Микрофиламенты, подобно микротрубочкам, найдены практически во всех эукариотических клетках. Представляют собой длинные нити толщиной 5 – 7 нм, состоящие из сократительного белка актина. Пучки микрофиламентов встречаются во многих клетках высших растений. По-видимому, играют важную роль в токах цитоплазмы. Микрофиламенты вместе с микротрубочками образуют гибкую сеть, называемую цитоскелетом.

Основное вещество довольно долго считали гомогенным (однородный) богатым белком раствором с малым количеством структур или вообще бесструктурным. Однако в настоящее время, используя высоковольтный электронный микроскоп, было установлено, что основное вещество представляет трехмерную решетку, построенную из тонких (диаметром 3 – 6 нм) тяжей, заполняющих всю клетку. Другие компоненты цитоплазмы, включая микротрубочки и микрофиламенты, подвешены к этой микротрабекулярной решетке.

Микротрабекулярная структура представляет собой решетку из белковых тяжей, пространство между которыми заполнено водой. Вместе с водой решетка имеет консистенцию геля, гель имеет вид студенистых тел.

К микротрабекулярной решетке прикреплены органеллы. Решетка осуществляет связь между отдельными частями клетки и направляет внутриклеточный транспорт.

Липидные капли – структуры сферической формы, придающие гранулярность цитоплазме растительной клетки под световым микроскопом. На электронных микрофотографиях они выглядят аморфными. Очень похожие, но более мелкие капли встречаются в пластидах.

Липидные капли, принимая за органеллы, называли их сферосомами и считали, что они окружены одно- или двуслойной мембраной. Однако последние данные показывают, что у липидных капель мембран нет, но они могут быть покрыты белком.

Эргастические вещества – это «пассивные продукты» протопласта: запасные вещества или отходы. Они могут появляться и исчезать в разные периоды клеточного цикла. Кроме зерен крахмала, кристаллов, антоциановых пигментов и липидных капель. К ним относятся смолы, камеди, танины и белковые вещества. Эргастические вещества входят в состав клеточной оболочки, основного вещества цитоплазмы и органелл, в том числе вакуолей.

Жгутики и реснички – это тонкие, похожие на волоски структуры, которые отходят от поверхности многих эукариотических клеток. Имеют постоянный диаметр, но длина колеблется от 2 до 150 мкм. Условно более длинные и немногочисленные из них называют жгутиками, а более короткие и многочисленные - ресничками. Четких различий между этими двумя типами структур не существует, поэтому для обозначения обоих используют термин жгутик.

У некоторых водорослей и грибов жгутики являются локомоторными органами, с помощью которых они передвигаются в воде. У растений (например, мхов, печеночников, папоротников, некоторых голосеменных) только половые клетки (гаметы) имеют жгутики.

Каждый жгутик имеет определенную организацию. Наружное кольцо из 9 пар микротрубочек окружает две дополнительные микротрубочки, расположенные в центре жгутика. Содержащие ферменты «ручки» отходят от одной микротрубочки каждой из наружных пар. Это основная схема организации 9 + 2 обнаружена во всех жгутиках эукариотических организмов. Считают, что движение жгутиков основано на скольжении микротрубочек, при этом наружные пары микротрубочек движутся одна вдоль другой без сокращения. Скольжение пар микротрубочек относительно друг друга вызывает локальное изгибание жгутика.

Жгутики «вырастают» из цитоплазматических цилиндрических структур, называемых базальными тельцами, образующимися и базальную часть жгутика. Базальные тельца имеют внутреннее строение, напоминающее строение жгутика, за исключением того, что наружные трубочки собраны в тройки, а не в пары, а центральные трубочки отсутствуют.

Клеточная стенка. Клеточная стенка отграничивает размер протопласта и предохраняет его разрыв за счет поглощения воды вакуолью.

Клеточная стенка имеет специфические функции, которые важны не только для клетки и ткани, в которой клетка находится, но и для всего растения. Клеточные стенки играют существенную роль в поглощении, транспорте и выделении веществ, а, кроме того, в них может быть сосредоточена лизосомальная, или переваривающая активность.

Компоненты клеточной стенки. Наиболее типичным компонентом клеточной стенки является целлюлоза, которая в значительной степени определяет её архитектуру. молекулы целлюлозы состоят из повторяющихся молекул глюкозы, соединенных конец к концу. Длинные тонкие молекулы целлюлозы объединены в микрофибриллы толщиной 10 – 25 нм. Микрофибриллы перевиваются и образуют тонкие нити, которые в свою очередь могут обматываться одна вокруг другой, как пряди в канате. Каждый такой «канат», или макрофибрилла, имеет толщину около 0,5 мкм, достигая в длину 4 мкм. Макрофибриллы прочны, как равная по величине стальная проволока.

Целлюлозный каркас клеточной стенки заполнен переплетающимися с ним целлюлозными молекулами матрикса. В его состав входят полисахариды, называемые гемицеллюлозами, и пектиновые вещества, или пектины, химически очень близкие к гемицеллюлозам.

Другой компонент клеточной стенки – лигнин – является самым распространенным после целлюлозы полимером растительных клеток. Лигнин увеличивает жесткость стенки и обычно содержится в клетках, выполняющих опорную или механическую, функцию.

Кутин, суберин, воска – обычно откладываются в оболочках защитных тканей растений. Кутин, например, содержится в клеточных оболочках эпидермы, а суберин - вторичной защитной ткани, пробки. Оба вещества встречаются в комбинации с восками и предотвращают чрезмерную потерю воды растением.

Слои клеточной стенки. Толщина стенки растительных клеток варьирует в широких пределах в зависимости от роли клеток в структуре растений и возраста самой клетки. Под электронным микроскопом просматривается в растительной клеточной стенке два слоя: срединная пластинка (называемая также межклеточным веществом), и первичной клеточной стенки. Многие клетки откладывают ещё один слой – вторичную клеточную стенку. Срединная пластинка располагается между первичными стенками соседних клеток. Вторичная стенка, если она есть, откладывается протопластом клетки на внутреннюю поверхность первичной клеточной стенки.

Срединная пластинка. Срединная пластинка состоит в основном из пектиновых веществ. Там, где должна возникнуть клеточная стенка, между двумя вновь образующимися клетками, вначале отмечается густое сплетение из канальцев эндоплазматической сети и цистерны аппарата Гольджи (диктиосом). Затем в этом месте появляются пузырьки, заполнены пектиновым веществом (из полисахаридов). Пузырьки эти отделяются от цистерн аппарата Гольджи. Ранняя клеточная стенка содержит различные полисахариды, основные из которых пектины и гемицеллюлоза. Позже в её состав входят более плотные вещества – целлюлоза и лигнин.

Первичная клеточная оболочка. Это слой целлюлозной оболочки, который откладывается до начала или во время роста клетки. Помимо целлюлозы, гемицеллюлоз и пектина первичные оболочки содержат гликопротеин. Первичные оболочки могут лигнифицироваться. Пектиновый компонент придаёт пластичность, которая позволяет первичной оболочке, растягивается по мере удлинения корня, стебля или листа.

Активно делящиеся клетки (большинство зрелых клеток, вовлеченных в процессы фотосинтеза, дыхания и секреции) имеют первичные оболочки. Такие клетки с первичной оболочкой и живым протопластом способны утрачивать характерную форму, делиться и дифференцироваться в новый тип клеток. Именно они участвуют в заживлении ран и регенерации тканей у растений.

Первичные клеточные оболочки не одинаковы по толщине на всем своем протяжении, а имеют тонкие участки, которые называются первичными поровыми полями. Тяжи цитоплазмы, или плазмодесмы, соединяющие протопласты соседних клеток, обычно проходят через первичные поровые поля.

Вторичная клеточная оболочка. Несмотря на то, что многие растительные клетки имеют только первичную оболочку, у некоторых к центру клетки протопласт откладывает вторичную оболочку. Обычно это происходит после прекращения роста клетки и площадь первичной оболочки более не увеличивается. По этой причине вторичная оболочка отличается от первичной. Вторичные оболочки особенно нужны специализированным клеткам, укрепляющим растение и проводящим воду. После отложения вторичной оболочки протопласт этих клеток, как правило, отмирает. Во вторичных оболочках больше целлюлозы, чем в первичных, а пектиновые вещества и гликопротеины в них отсутствуют. Вторичная оболочка растягивается с трудом, ее матрикс состоит из гемицеллюлозы.

Во вторичной оболочке можно выделить три слоя – наружный, средний и внутренний (S1, S2, S3). Слоистая структура вторичных оболочек значительно увеличивает их прочность. Микрофибриллы целлюлозы во вторичной оболочке откладывается плотнее, чем в первичной. Лигнин – обычный компонент вторичных оболочек древесины.

Поры в оболочках контактирующих клеток расположены напротив друг друга. Две лежащие друг против друга поры и поровая мембрана образуют пару пор. В клетках, имеющих вторичные оболочки, существуют два основных типа пор: простые и окаймленные. В окаймленных порах вторичная оболочка нависает над полостью поры. В простых порах этого нет.

Рост клеточной оболочки. По мере роста клетки увеличивается толщина и площадь клеточной оболочки. Растяжение оболочки – процесс сложный. Он контролируется протопластом и регулируется гормоном ауксином.

В клетках, растущих во всех направлениях равномерно, отложение миофибрилл носит случайный характер. Эти миофибриллы образуют неправильную сеть. Такие клетки обнаружены в сердцевине стебля, запасающих тканях и при культивировании клеток in vitro. В удлиняющихся клетках миофибриллы боковых оболочек откладывается под прямым углом к оси удлинения.

Вещества матрикса – пектины, гемицеллюлозы и гликопротеины переносятся к оболочке в пузырьках диктиосом. При этом пектины более характерны для растущих клеток, а гемицеллюлозы преобладают в не растущих клетках.

Целлюлозные микрофибриллы синтезируются на поверхности клетки с помощью ферментного комплекса, связанного с плазматической мембраной. Ориентация микрофибрилл контролируется микротрубочками, расположенными у внутренней поверхности плазматической мембраны.

Плазмодесмы. Это тонкие нити цитоплазмы, которые связывают между собой протопласты соседних клеток. Плазмодесмы либо проходят сквозь клеточную оболочку в любом месте, либо сосредоточены на первичных поровых полях или в мембранах между парами пор. Под электронным микроскопом плазмодесмы выглядят как узкие каналы, выстланные плазматической мембранной. По оси канала из одной клетки в другую тянется цилиндрическая трубочка меньшего размера – десмотрубочка, которая сообщается с эндоплазматическим ретикулумом обеих смежных клеток. Многие плазмодесмы формируются во время клеточного деления, когда трубчатый эндоплазматический ретикулум захватывается развивающейся клеточной пластинкой. Плазмодесмы могут образовываться и в оболочках неделящихся клеток. Эти структуры обеспечивают эффективный перенос некоторых веществ от клетки к клетке.

1

2

Вопрос о пределе делимости материи издавна волновал человечество. Еще древнегреческий натурфилософ Демокрит (460-370 гг. до н. э.) предсказал существование атомов – частиц, неделимых без потери качества. Во второй половине XVII в. немецкий философ Готфрид Вильгельм Лейбниц создал учение о монадах. Монада – это мельчайшая частица, отражающая все свойства целого. Таким образом, Лейбниц предсказал существование элементарной биологической системы, обладающей всеми свойствами жизни. В настоящее время бурно развивается концепция фракталов (Бенуа Мандельброт, 1982). Фракталы – это самоподобные структуры, состоящие из элементов, подобных целому.

Открытие и дальнейшее изучение клетки стало возможным только после изобретения микроскопа.

Это связано с тем, что человеческий глаз не способен различать объекты с размерами менее 0,1 мм, что составляет 100 микрометров (сокращ. микрон или мкм).

Размеры же клеток (а тем более, внутриклеточных структур) существенно меньше. Например, диаметр животной клетки обычно не превышает 20 мкм, растительной – 50 мкм, а длина хлоропласта цветкового растения – не более 10 мкм.

С помощью светового микроскопа можно различать объекты диаметром в десятые доли микрона. Поэтому световая микроскопия является основным, специфическим методом изучения клеток.

Примечание. 1 миллиметр (мм) = 1.000 микрометров (мкм) = 1.000.000 нанометров (нм). 1 нанометр = 10 ангстрем (Å). Одному ангстрему примерно соответствует диаметр атома водорода.

Первые оптические приборы (простые линзы, очки, лупы) были созданы еще в XII веке. Но сложные оптические трубки, состоящие из двух и более линз, появляются только в конце XVI века. В изобретении светового микроскопа принимали участие Галилео Галилей, отец и сын Янсены, физик Дрюбель и другие ученые. Первые микроскопы использовались для изучения самых разнообразных объектов.

Открытие клетки

В середине XVII в. выдающийся английский естествоиспытатель Роберт Гук, изучая микроскопическое строение пробки, установил, что она состоит из замкнутых пузырьков, или ячеек, разделенных общими перегородками – стенками. Р. Гук назвал эти ячейки клетками (лат. – cellula). В дальнейшем Р. Гук изучал срезы живых стеблей и обнаружил в них аналогичные ячейки, которые, в отличие от мертвых клеток пробки, были заполнены «питательным соком». Свои наблюдения Р. Гук изложил в своем труде «Микрография, или некоторые физиологические описания мельчайших телец при помощи увеличительных стекол» (1665).

В 1671 г. Марчелло Мальпиги (Италия) и Неемия Грю (Англия), изучая анатомическое строение растений, пришли к выводу, что все растительные ткани состоят из пузырьков-клеток. Термин «ткань» («кружево») впервые употребил Н. Грю. В работах Р. Гука, М. Мальпиги и Н. Грю клетка рассматривается как элемент, как составная часть ткани. Клетки разделены между собой общими перегородками и поэтому не могут быть мыслимы вне ткани, вне организма.

Однако голландский микроскопист–любитель Антонио ван Левенгук (1680) наблюдал одноклеточные организмы – «анималькули» (инфузории, саркодовые, бактерии) и другие формы одиночных клеток (форменные элементы крови, сперматозоиды). В XVIII в. фундаментальные наблюдения простейших провел немецкий натуралист-любитель Мартин Ледермюллер.

Постепенно формировались представления о клетке как элементарном организме: в дальнейшем немецкий физиолог Эрнст фон Брюкке (1861) называл клетку элементарным организмом.

История клеточных теорий

М. Мальпиги и Н. Грю сформулировали первую пенисто-ячеистую клеточную теорию: как пена состоит из пузырьков, так и ткань состоит из пузырьков-клеток. Клетка рассматривалась как элемент, как составная часть ткани. Клетки разделены между собой общими перегородками и поэтому не могут быть мыслимы вне ткани, вне организма.

Академик Российской Академии наук Каспар Фридрих Вольф (1759), изучая рост растений, установил, что клетка есть единица роста, то есть рост организмов сводится к образованию новых клеток. К. Ф. Вольф был убежден в невозможности существования клеток вне ткани, однако в зрелых плодах он наблюдал отдельные клетки, не имеющие общей перегородки. Система взглядов К. Ф. Вольфа может считаться первой стройной клеточной теорией, однако эта теория не носила универсального характера. К. Ф. Вольф не рассматривал клеточную теорию применительно к животным клеткам: «Этот вопрос обойден молчанием, ибо он не представляет никаких трудностей». В то же время К. Ф. Вольф считал проблему образования клеточной ткани у животных «столь же важной, сколь и темной».

Немецкий естествоиспытатель Лоренц Окен (1809) на основе натурфилософских рассуждений пришел к выводу, что клетки одноклеточных и многоклеточных организмов гомологичны: «Первичный пузырек слизи в философском смысле может быть назван инфузорией... Растения и животные могут быть только лишь метаморфозами инфузорий... Организм представляет собою синтез инфузорий».

В начале XIX века немецкие ботаники Г. Линк, К. Рудольфи, Л. Тревиранус, И. Молденгауер доказали, что каждая растительная клетка является самостоятельной структурой («коробочкой»), покрытой непрерывной оболочкой. Немецкий ботаник Франц Мейен (1830) предсказал существование клеточных мембран: «клетка есть пространство, отграниченное вполне замкнутое мембраной».

Клетки многоклеточных животных до начала XIX в. практически не изучались. Известны лишь отдельные наблюдения клеток эпидермиса кожи угря и эритроцитов (Феликс Фонтана, 1781-1787). Только в начале XIX века в связи с развитием микроскопической техники и химии появилась возможность разнообразных способов подготовки микроскопических препаратов: фиксация, мацерация, дифференциальное окрашивание. Начинается интенсивное изучение клеток животных.

До начала XIX в. считалось, что в состав тканей входят не только клетки, но и неклеточные структуры – волокна и сосуды – происхождение которых не связывалось с деятельностью клеток. На основании подобных взглядов была создана теория сосудисто-волокнистого строения организмов, которую разработал швейцарский физиолог Альбрехт фон Галлер в 1757-1766 гг. и дополнил немецкий ботаник Франц Мейен в 1830 г.

В 1830-е гг. чешский гистолог Ян Пуркинье, немецкий физиолог Иоганнес Мюллер и другие исследователи показали, что клеточная организация является универсальной и для животных тканей, а немецкий физиолог Теодор Шванн доказал гомологичность растительных и животных клеток. В своих работах Т. Шванн широко использовал термин cytos (от греч. «полость») и его производные.

Изучая структуру хряща и хорды, Т. Шванн показал, что коллагеновые волокна являются производными клеток.

Основные положения клеточной теории Шванна–Шлейдена

В 1838-1839 гг. Теодор Шванн и немецкий ботаник Маттиас Шлейден сформулировали основные положения современной клеточной теории:

1. Клетка есть единица структуры. Все живое состоит из клеток и их производных. Клетки всех организмов гомологичны.

2. Клетка есть единица функции. Функции целостного организма распределены по его клеткам. Совокупная деятельность организма есть сумма жизнедеятельности отдельных клеток.

3. Клетка есть единица роста и развития. В основе роста и развития всех организмов лежит образование клеток.

Клеточная теория Шванна–Шлейдена принадлежит к величайшим научным открытиям XIX в. Изложенные положения этой теории не устарели и сохранились в современной биологии клетки.

Проблема образования новых клеток

В XVIII в. Л. Спалланцани впервые наблюдал деление одноклеточных организмов (инфузорий).

Однако проблему образования новых клеток впервые сформулировал Каспар Фридрих Вольф (его диссертация называлась «Теория зарождения» – Theoria generationis, 1759). По мнению К. Ф. Вольфа, клетки растений образуются из студневидной гомогенной массы в ходе органогенеза.

Впервые деление клеток (дробление яиц лягушки) наблюдали французские ученые Прево и Дюма (1824). Более подробно этот процесс описал итальянский эмбриолог М. Рускони (1826). Процесс деления ядер при дроблении яиц у морских ежей описал К. Бэр (1845). Первое описание деления клеток у водорослей выполнил Б. Дюмортье (1832).

Однако Т. Шванн и М. Шлейден считали, что клетки образуются в ходе цитогенеза из зернышек–цитобластов, которые могут зарождаться в самих клетках (М. Шлейден) и вне клеток (Т. Шванн).

Русский ботаник Павел Федорович Горянинов («Система природы», 1837) экспериментально установил, что цитогенез был возможен только в эволюционном прошлом, а в настоящее время клетки возникают или путем деления, или путем почкования, или путем слияния.

Окончательный ответ на вопрос о возникновении новых клеток дал Рудольф Вирхов (ученик И. Мюллера). В работе «Целлюлярная патология...» (1858) он изложил основные положения собственной клеточной теории:

1. Клетка есть последний морфологический элемент, способный к жизнедеятельности.

2. Любая клетка происходит только от клетки.

3. Организм есть федерация клеточных государств.

Теория клеточного государства постоянно подвергалась критике (в т.ч. в СССР, в эпоху лысенковщины): Р. Вирхова обвиняли в непонимании сущности жизни, в редукционизме, то есть в сведении сложных физиологических процессов к простому суммированию функций. В действительности метафоричность теории клеточного государства должна была подчеркнуть сложный характер взаимодействия клеток в организме.

Именно второе положение теории Р. Вирхова – каждая клетка от клетки – дополнило клеточную теорию Шванна–Шлейдена.

Развитие клеточной теории

Клеточная теория Шванна–Шлейдена–Вирхова постоянно развивалась.

Макс Шультце (1861) дал морфологическое определение клетки: клетка – комочек протоплазмы, внутри которого лежит ядро. Этим определением он попытался решить проблему неклеточных структур, например, волокон поперечно-полосатых мышц, которые образуются путем слияния одноядерных миобластов (эмбриональных мышечных клеток): при этом индивидуальные оболочки (мембраны) утрачиваются, но каждое ядро сохраняет окружающую его саркоплазму (эндоплазму с органоидами). Таким образом, М. Шультце подчеркивал сохранение индивидуальности клеток даже при их слиянии.

Немецкий зоолог-эволюционист Эрнст Геккель создал теорию происхождения многоклеточных организмов путем дифференциации клеток колоний одноклеточных организмов (теория гастреи). При этом возможно слияние отдельных клеток с образованием синцития («соклетия»). Таким образом, Э. Геккель заложил основы эволюционной цитологии.

Развитие науки подтвердило положение теории Р. Вирхова «каждая клетка – от клетки»: новые клетки эукариот могут образовываться только путем митоза или мейоза.

Отдельные фазы митоза наблюдали: немецкий ботаник В. Гофмейстер (1849; клетки тычиночной нити традесканции), российские ботаники Э. Руссов (1872; материнские клетки спор папоротников, хвощей, лилии) и И.Д. Чистяков (1874; споры хвоща и плауна), немецкий зоолог А. Шнейдер (1873; дробящиеся яйца плоских червей), польский ботаник Э. Страсбургер (1875; спирогира, плаун, лук). Для обозначения процессов перемещения составных частей ядра немецкий гистолог В. Шлейхнер предложил термин кариокинез (1879), а немецкий гистолог В. Флемминг ввел термин митоз (1878). В 1880-е гг. Общая морфология хромосом была описана еще в работах Гофмейстера, однако лишь в 1888 г. немецкий гистолог В. Вальдейер ввел термин хромосома. Ведущая роль хромосом в хранении, воспроизведении и передаче наследственной информации была доказана лишь в ХХ веке.

Отдельные фазы мейоза у животных описал В. Флемминг (1882), а у растений – Э. Страсбургер (1888), а затем российский ученый В.И. Беляев. В это же время (1887) А. Вайсман теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Первое подробное описание мейоза в ооцитах кролика дал Уиниуортер (1900).

Изучение механизмов митоза и мейоза продолжается до сих пор.

В конце XIX в. окончательно формируются представления о клеточном уровне организации жизни. Понятие «клетка» отделяется от понятия ткани, органа, организма. Возникает особый раздел биологии – биология клетки (Жан Батист Карнуа, 1884).

Ганс Дриш (1891) пришел к выводу, что организм не равен сумме клеток. Клетка – не элементарный организм, а элементарная биологическая система. Такое представление о клетке дало возможность изучать некую обобщенную клетку, абстрагируясь от свойств клеток как элементов тканей. Цитология окончательно оформляется как самостоятельная наука.

Современный этап в развитии цитологии начался в середине XX века в связи с развитием электронной микроскопии, а также биохимических, биофизических методов исследований и развитием общебиологических наук (синтетическая теория эволюции, молекулярная генетика, популяционная биология, биологическая статистика и др.).

Лупа - самый простой увеличительный прибор. Главная его часть — увеличительное стекло, выпуклое с двух сторон и вставленное в оправу. С помощью лупы мы видим изображение предмета, увеличенное в 2—25 раз. Лупу берут за рукоятку и приближают к предмету на такое расстояние, ври котором изображение предмета становится наиболее четким.

Микроскоп — это прибор, увеличивающий изображение предмета в несколько сот и даже в тысячи раз 15 . Первые микроскопы начали изготавливать в XVII в. Наиболее совершенными в то время были микроскопы, сконструированные голландцем Антони ван Левенгуком. Его микроскопы давали увеличение до 270 раз. Современные световые микроскопы увеличивают изображение до 3600 раз. В XX в. был изобретен электронный микроскоп, увеличивающий изображение в десятки и сотни тысяч раз.

Главная часть светового микроскопа, с которым вы работаете в школе,— увеличительные стекла, вставленные в трубку, или тубус (по-латыни «тубус» значит «трубка»). В верхнем конце тубуса находится окуляр, состоящий из оправы и двух увеличительных стекол. Название «окуляр» происходит от латинского слова «окулус», что значит «глаз». Рассматривая предмет с помощью микроскопа, глаз приближают к окуляру.

На нижнем конце тубуса помещается объектив, состоящий из оправы и нескольких увеличительных стекол. Название «объектив» происходит от латинского слова «объектум», что значит «предмет».

Тубус прикреплен к штативу. К штативу прикреплен также предметный столик, в центре которого имеется отверстие, и под ним зеркало.

Пользуясь микроскопом, можно рассмотреть клетки всех органов растения.

Во время работы с микроскопом рекомендуется соблюдать следующие правила. Микроскоп поставить штативом к себе, на расстоянии 5—8 мм от края стола. Свет направлять зеркалом в отверстие предметного столика.

Приготовить препарат, поместить его на предметный столик и закрепить там предметное стекло двумя зажимами.

Пользуясь винтом, плавно опустить тубус так, чтобы нижний край объектива оказался на расстоянии 1—2 мм от препарата.

Смотря в окуляр, медленно поднимать тубус, пока не появится четкое изображение предмета.

После работы микроскоп убрать в футляр.

3

В строении и функционировании животной и растительных клеток имеются как общие черты, так и различия. Различия заключаются в следующем:

У растительной клетки над клеточной мембраной располагается толстая и прочная клеточная оболочка из полисахаридов (целлюлоза, пектин, гемицеллюлоза). Молекулы целлюлозы в клеточной стенке располагаются параллельно друг другу и соединены между собой большим количеством водородных связей. Целлюлоза придает клеточной стенке прочность. Пространство между молекулами целлюлозы заполнено другими углеводами, имеющими рыхлую структуру. Благодаря им клеточная оболочка во время роста клеток может растягиваться. Клеточная оболочка имеет поры. Через них из клетки в клетку проходят тяжи цитоплазмы - плазмодесмы. Через плазмодесмы происходит обмен веществами между соседними клетками. У животных клеток клеточная оболочка и плазмодесмы отсутствуют. Клеточная мембрана покрыта очень тонким слоем углеводов, входящим в состав гликокаликса.

В клетках растений есть особые двумембранные органоиды - пластиды. Различают 3 вида пластид: хлоропласты, хромопласты, лейкопласты.

В клетках высших растений отсутствуют центриоли, а клеточный центр представлен только микротрубочками. В клетках низших растений, как и в клетках животных, центриоли имеются.

Вакуоли в растительных клетках занимают до 90% их объема. В молодых клетках вакуоли мелкие и многочисленные. Затем они сливаются и образуется одна большая вакуоль. Вакуоль растительной клетки заполнена клеточным соком. Клеточный сок - это водный раствор сахаров, аминокислот, витаминов, пигментов, неорганических солей. Вакуоль выполняет несколько функций: придает упругость клетке, запасает органические вещества, в ней откладываются отбросы обмена веществ. В клетках животных вакуоли занимают небольщой объем (до 5 %). Это в основном сократительные, пищеварительные, фагоцитарные вакуоли.

В растительных клетках углеводы запасаются в виде крахмала, а в животных клетках - в виде гликогена.

По способу питания растения являются фотоавтотрофами, а животные - гетеротрофами.

4

К бактериям относятся микроскопические растительные организмы. Большинство их - одноклеточные организмы, не содержащие хлорофилла и размножающиеся делением.

По форме бактерии бывают шаровидными, палочковидными и извитыми. Шаровидные бактерии называют кокками. Они могут быть одиночными (кокки, микрококки), соединенными попарно (диплококки), группами по четыре (тетракокки), связанными в цепочку (стрептококки), пакетиками (сарцины) и иметь вид бесформенных скоплений шариков (стафилококки). Диаметр шаровидных бактерий колеблется от 0,5 до 1 мкм.

Палочковидные бактерии бывают двух видов: бактерии и бациллы. Основным признаком, отличающим эти формы, является способность к спорообразованию. Бациллы образуют споры, в то время как бактерии не обладают этой способностью. Палочковидные бактерии также могут быть соединены попарно или в цепочку. Толщина этих бактерий 0,2-2,0, длина – 1-7 мкм.

Извитые бактерии имеют изогнутую форму и по числу завитков делятся на вибрионы, имеющие форму запятой (возбудитель холеры), спириллы с двумя - тремя завитками и спирохеты с многочисленными завитками. Размеры этих бактерий те же, что и палочковидных.

Бактериальная клетка (рис.13) состоит из клеточной оболочки и содержимого – цитоплазмы (протоплазмы).

Клеточная оболочка определяет форму клетки и предохраняет ее от внешних воздействии. Она обладает полупроницаемостью, т. е. сквозь нее проходят одни вещества (низкомолекулярные) и не проходят другие (высокомолекулярные соединения). Она играет важную роль в обмене веществ между клеткой и окружающей средой. По новейшим данным, в ней происходит множество химических реакций, вплоть до синтеза полисахаридов и, возможно, белков.

При помощи электронной микроскопии стало возможным более детальное изучение строения оболочки. Ее каркас образован полимером муреином, в котором отлагаются другие вещества.

На различии в составе клеточной оболочки основывается их отношение к окраске по Граму - важный отличительный признак. У грамположительных бактерий муреиновый скелет однослойный, содержит липопротеиды, полисахариды и фосфаты. Грамотрицательные бактерии имеют многослойный муреиновый скелет, содержат мало белка, а полисахариды или отсутствуют, или их мало.

Наружный слой цитоплазмы, прилегающий к клеточной оболочке, называется цитоплазматической мембраной. Она трехслойная, содержит липиды и белки, а также большое количество различных ферментов, участвующих в обмене веществ.

Цитоплазматическая мембрана выполняет роль осмотического барьера. Она контролирует поступление веществ в клетку и выведение их наружу. Предполагают, что белковые мостики в липидном слое служат порами для движения тока веществ. Регулируется это движение ферментами, локализованными внутри или на поверхности мембраны. В цитоплазматической мембране происходит, по-видимому, синтез веществ клеточной оболочки и ферментов.

Цитоплазма, заполняющая всю полость клетки, - живое вещество в полужидком состоянии. Ее главная составная часть - белок. В ней находятся также запасные питательные вещества в виде жиров и жироподобных веществ.

В цитоплазме находятся рибосомы и мезосомы. В рибосомах происходит синтез белков. В одной клетке содержится 5-50 тыс. рибосом. В них сосредоточено 80-85 % всей РНК клетки. В мезосомах сконцентрированы окислительно-восстановительные ферменты. Тут происходят окислительно-восстановительные процессы, в результате которых клетка получает необходимую энергию.

У бактерий отсутствует оформленное ядро. Ядерное вещество, состоящее из ДНК и РНК, локализовано в хроматиновых тельцах.

У некоторых бактерий клеточная оболочка способна ослизняться, в результате чего клетка покрывается слизистой капсулой. При сильном ослизнении клетки склеиваются в сплошную слизистую массу зооглея.

Вследствие малых размеров бактерии подвержены броуновскому движению. Собственное движение бактерий осуществляется при помощи жгутиков, состоящих из нескольких волокон, закругленных спирально вокруг осевой нити и прикрепляющихся при помощи особых дисков под цитоплазматической мембраной. Жгутики очень тонкие, так что не видны в оптический микроскоп без специальной окраски, но по длине во много раз превышают длину клетки.

По числу и расположению жгутиков бактерии делятся на монотрихи (с одним жгутиком), лофотрихи (с пучком жгутиков на конце) и перитрихи (жгутики покрывают всю поверхность клетки).

Скорость движения бактерий зависит от возраста и условий. Молодые клетки более подвижны, чем старые. При благоприятных условиях клетка проходит за 1 с расстояние, равное ее длине.

5

Клетка гриба, как броней, одета твердой оболочкой, основу которой составляет клеточная стенка. Она содержит сахара, белки, жиры, нуклеиновые кислоты, а также хитин (подобно наружному скелету насекомых и ракообразных). В наружных частях клеточной оболочки часто можно обнаружить темные пигменты - меланины. К внутренней стороне клеточной стенки примыкает цитоплазматическая мембрана - плазмалемма. Одна из основных ее функций - поддерживать в клетке определенное осмотическое давление. Сквозь плазмалемму внутрь клетки поступают вещества, служащие источником питания, а наружу выделяются продукты химической активности клетки. Таким образом, цитоплазматическая мембрана играет роль пограничной стражи, которая пропускает внутрь клетки или выдворяет из нее определенные вещества, причем сама активно способствует этому процессу. Важнейшей структурой клетки является эндоплазматический ретикулум - система канальцев и пузырьков (цистерн). Различают два типа эндоплазматического ретикулума - гладкий и зернистый. На поверхности последнего расположены рибосомы - основные центры синтеза белка.

В клетках грибов, как и в клетках растительных и животных организмов, обнаружены митохондрии - особые энергетические станции клеток. В них протекают процессы химического преобразования веществ, благодаря которым клетка приобретает необходимую ей энергию.

Важный жизненный центр клетки - ядро. Это - "планирующий орган", управляющий деятельностью клетки и обеспечивающий передачу наследственных свойств от одного поколения другому. Ответственность за эту операцию несут, как уже говорилось, молекулы дезоксирибонуклеиновой кислоты (ДНК), содержащиеся в ядре. У грибов встречаются одноядерные (монокарионы), двухъядерные (дикарионы) и многоядерные (мультикарионы) клетки. Ядра грибных клеток обладают интересной особенностью - они могут передвигаться из старых частей мицелия к растущим. Механизм этого движения пока еще до конца не изучен.

В клетках гриба есть свои кладовые, где хранятся запасы питательных веществ; гликоген в виде гранул содержится в цитоплазме, там же можно обнаружить капли масла и волютин (питательное вещество, состоящее из полифосфатов, а также соединений, близких к нуклеиновым кислотам).

6

6. Клетка – мельчайшая структура всего растительного и животного мира – самое загадочное явление природы. Даже на своем собственном уровне клетка чрезвычайно сложно устроена и содержит множество структур, которые выполняют определенные функции. В организме совокупность определенных клеток образует ткани, ткани – органы, а те – системы органов. Строение животной и растительной клетки во многом сходно, но в то же время и имеет принципиальные различия. Например, похож химический состав клеток, сходны принципы строения и жизнедеятельности, но в растительных клетках нет центриолей (кроме водорослей), а в качестве питательной запасной базы служит крахмал.

Строение клетки животного базируется на трех основных составляющих – ядро, цитоплазма и клеточная оболочка. Вместе с ядром цитоплазма образует протоплазму. Клеточная оболочка – это биологическая мембрана (перегородка), которая отделяет клетку от внешней среды, служит оболочкой для клеточных органоидов и ядра, образует цитоплазматические отсеки. Если поместить препарат под микроскоп, то строение животной клетки легко можно увидеть. Клеточная оболочка содержит три слоя. Внешний и внутренний слои белковые, а промежуточный – липидный. При этом липидный слой делится еще на два слоя – слой гидрофобных молекул и слой гидрофильных молекул, которые располагаются в определенном порядке. На поверхности клеточной мембраны располагается особая структура – гликокаликс, которая обеспечивает избирательную способность мембраны. Оболочка пропускает необходимые вещества и задерживает те, которые приносят вред. Строение животной клетки нацелено на обеспечение защитной функции уже на этом уровне. Проникновение веществ через оболочку происходит при непосредственном участии цитоплазматической мембраны. Поверхность этой мембраны достаточно значительна за счет изгибов, выростов, складок и ворсинок. Цитоплазматическая мембрана пропускает как мельчайшие частицы, так и более крупные.

Строение животной клетки характеризуется наличием цитоплазмы, в большинстве своем состоящей из воды. Цитоплазма – это вместилище для органоидов и включений. Кроме этого цитоплазма содержит и цитоскелет – белковые нити, которые участвуют в процессе деления клетки, отграничивают внутриклеточное пространство и поддерживают клеточную форму, способность сокращаться. Важная составляющая цитоплазмы – гиалоплазма, которая определяет вязкость и эластичность клеточной структуры. В зависимости от внешних и внутренних факторов гиалоплазма может менять свою вязкость – становиться жидкой или гелеобразной.

Изучая строение животной клетки, нельзя не обратить внимание на клеточный аппарат – органоиды, которые находятся в клетке. Все органоиды имеют собственное специфическое строение, которое обусловлено выполняемыми функциями. Ядро – центральная клеточная единица, которая содержит наследственную информацию и участвует в обмене веществ в самой клетке. К клеточным органоидам относятся эндоплазматическая сеть, клеточный центр, митохондрии, рибосомы, комплекс Гольджи, пластиды, лизосомы, вакуоли. Подобные органоиды есть в любой клетке, но, в зависимости от функции, строение животной клетки может отличаться наличием специфических структур.

Структура цитоплазмы

Жидкую составляющую цитоплазмы также называют цитозолем. Под световым микроскопом казалось, что клетка заполнена чем-то вроде жидкой плазмы или золя, в котором «плавают» ядро и другие органоиды. На самом деле это не так. Внутреннее пространство эукариотической клетки строго упорядочено. Передвижение органоидов координируется при помощи специализированных транспортных систем, так называемых микротрубочек, служащих внутриклеточными «дорогами» и специальных белков динеинов и кинезинов, играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.

Ядро

Клеточное ядро содержит молекулы ДНК, на которых записана генетическая информация организма. В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на матрице ДНК. В ядре же синтезированные молекулы РНК претерпевают некоторые модификации (например, в процессе сплайсинга из молекул матричной РНК исключаются незначащие, бессмысленные участки), после чего выходят в цитоплазму. Сборка рибосом также происходит в ядре, в специальных образованиях, называемых ядрышками. Компартмент для ядра — кариотека — образован за счёт расширения и слияния друг с другом цистерн эндоплазматической сети таким образом, что у ядра образовались двойные стенки за счёт окружающих его узких компартментов ядерной оболочки. Полость ядерной оболочки называется люменом или перинуклеарным пространством. Внутренняя поверхность ядерной оболочки подстилается ядерной ламиной, жесткой белковой структурой, образованной белками-ламинами, к которой прикреплены нити хромосомной ДНК. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой.

7

8

9

Эндоплазматическая сеть (ЭПС)

ЭПС - это одномембранный органоид, состоящий из полостей и канальцев, соединенных между собой. Эндоплазматическая сеть структурно связана с ядром: от наружной мембраны ядра отходит мембрана, образующая стенки эндоплазматической сети. ЭПС бывает 2 видов: шероховатая (гранулярная) и гладкая (агранулярная). В любой клетке присутствуют оба вида ЭПС.

На мембранах шероховатой ЭПС располагаются многочисленные мелкие гранулы - рибосомы, специальные органоиды, с помощью которых синтезируются белки. Поэтому нетрудно догадаться, что на поверхности шероховатой ЭПС синтезируется белки, которые проникают внутрь шероховатой ЭПС и по ее полостям могут переместиться в любое место клетки.

Мембраны гладкой ЭПС лишены рибосом, но зато в ее мембранах встроены ферменты, осуществляющие синтез углеводов и липидов. После синтеза углеводы и липиды тоже могут перемещаться по мембранам ЭПС в любое место клетки Степень развития вида ЭПС зависит от специализации клетки. Например, в клетках, синтезирующих белковые гормоны, будет лучше развита гранулярная ЭПС, а в клетках , синтезирующих жироподобные вещества - агранулярная ЭПС.

Функции ЭПС:

Синтез веществ. На шероховатой ЭПС синтезируются белки, а на гладкой - липиды и углеводы.

Транспортная функция. По полостям ЭПС синтезированные вещества перемещаются в любое место клетки.

10

Какие органические вещества входят в состав клеток и организмов? В состав клеток входят разные органические вещества. Основу их молекул образуют атомы углерода, связанные между собой и с другими атомами ковалентными связями.

Для заполнения внешней электронной оболочки атому углерода не хватает четырех электронов, поэтому углерод может образовать четыре ковалентные связи с атомами водорода, кислорода или азота. Каждый атом углерода может также соединяться с другими атомами углерода.

Соединенные друг с другом атомы углерода способны образовывать разные структуры: линейные, циклические, разветвленные.

В состав клетки входят такие органические вещества, как углеводы, липиды, белки, нуклеиновые кислоты, АТФ. Крупные и сложные по строению молекулы органических соединений называют макромолекулами. Они состоят из более простых и небольших молекул-»кирпичиков» (таблица 3). Эти «кирпичики» специфичны для разных веществ.

Таблица 3Макромолекулы и их состав

Сложные Простые углеводы

Жиры Спирт, глицерин и жирные кислоты

Белки Аминокислоты

Нуклеиновые кислоты Нуклеотиды

«Кирпичиками» молекул белка являются аминокислоты, а нуклеиновых кислот – нуклеотиды. «Кирпичики» белков, нуклеиновых кислот одинаковы у всех организмов – от бактерий до человека, что говорит о единстве происхождения всего живого мира.

Познакомимся с некоторыми органическими веществами клетки. Углеводы – органические вещества, в состав которых входят углерод, водород и кислород. В молекулах углеводов соотношение между числом атомов углерода, водорода и кислорода составляет 1 : 2 : 1. Различают простые углеводы – моносахариды и сложные – п 1000 олисахариды.

Моносахариды – бесцветные твердые кристаллические вещества, хорошо растворимые в воде, обычно сладкие на вкус. К моносахари-дам относят глюкозу, фруктозу, ри-бозу, дезоксирибозу и др. Глюкозы и фруктозы много в меде, фруктах. Сахар, который мы едим, состоит из остатков молекул глюкозы и фруктозы. Рибоза и дезоксирибоза входят в состав нуклеиновых кислот.

Основа молекул моносахаридов представляет собой линейную цепочку атомов углерода. Несмотря на то что углеродный остов может включать от трех и более атомов углерода, у всех углеводов один из атомов углерода связан двойной связью с атомом кислорода и образует карбонильную группу. В растворах линейные молекулы моносахаридов принимают циклическую форму.

Сложные и крупные молекулы полисахаридов (крахмал, целлюлоза, гликоген) состоят из множества соединенных между собой остатков молекул моносахаридов. Такие полисахариды, как крахмал, целлюлоза, гликоген, состоят из соединенных молекул глюкозы, число которых непостоянно и может колебаться от сотен тысяч до миллионов. Поэтому общая формула крахмала, гликогена и целлюлозы выглядит так: (C6H10O5)n.

При соединении двух молекул глюкозы одна молекула воды отщепляется. Символ n означает, что число молекул глюкозы в молекулах крахмала, гликогена и целлюлозы может изменяться. Целлюлоза имеет линейную, структуру а крахмал и гликоген – разветвленную.

*Различие между молекулами целлюлозы и крахмала состоит также и в том, что число n у целлюлозы больше. В состав одной макромолекулы крахмала входит от нескольких сотен до нескольких тысяч звеньев, а в состав молекулы целлюлозы – свыше 10 000 звеньев. Целлюлоза образует волокна, которые придают растению жесткость и прочность. Так, волокно целлюлозы прочнее, чем стальная проволока такого же диаметра.

Другой тип молекул, входящих в состав клетки, – липиды (от греч. lipos – жир). Молекулы жиров образованы остатками трехатомного спирта (глицерина) и остатками молекул жирных кислот. Главное свойство липидов – гидрофобность.

Особенности структуры молекул углеводов и липидов определяют их функции в клетке. Так, благодаря тому что некоторые полисахариды и все липиды не растворяются в воде, они накапливаются в клетках как запасные питательные вещества. Известно, что крахмалом буквально «набиты» клетки клубней картофеля и корневищ многих растений, например топинамбура.

Животный крахмал – гликоген накапливается в клетках печени и мышц. Когда организму требуется энергия, молекулы гликогена расщепляются на легко растворимые молекулы глюкозы, которые доставляются кровью к различным клеткам организма животного.

Запасы жира содержатся в клетках жировой клетчатки птиц и млекопитающих, семян некоторых растений. У хордовых животных запасы жира откладываются под кожей и служат для защиты организма от переохлаждения и механических повреждений. Так, китов, моржей, тюленей, пингвинов защищают от переохлаждения мощные жировые отложения. У кита, например, слой подкожного жира достигает 1 м.

Одна из важнейших функций углеводов и липидов – энергетическая. Заключенная в этих веществах энергия освобождается при разрыве химических связей в процессе расщепления молекул. Молекулы углеводов и жиров окисляются в клет e0f ках до углекислого газа и воды, а освобождающаяся при этом энергия используется на процессы жизнедеятельности. Так, при окислении 1 г углеводов освобождается 17,6 кДж энергии, а при окислении 1 г жиров – в два раза больше.

Углеводы и липиды выполняют также структурную функцию. Они входят в состав различных частей и органоидов клетки. Так, из целлюлозы строятся клеточные стенки растений. В древесине содержится от 40 до 60% целлюлозы. Липиды – обязательный компонент клеточной мембраны.

11

Чем различается химический состав тел живой и неживой природы? Организмы состоят из клеток. Клетки разных организмов обладают сходным химическим составом. В таблице 1 представлены основные химические элементы, обнаруженные в клетках живых организмов.

По содержанию в клетке можно выделить три группы элементов. В первую группу входят кислород, углерод, водород и азот. На их долю приходится почти 98% всего состава клетки. Во вторую группу входят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента. Элементы этих двух групп относят к макроэлементам (от греч. macros – большой).

Остальные элементы, представленные в клетке сотыми и тысячными долями процента, входят в третью группу. Это микроэлементы (от греч. micros – малый).

Каких-либо элементов, присущих только живой природе, в клетке не обнаружено. Все перечи 1000 сленные химические элементы входят и в состав неживой природы. Это указывает на единство живой и неживой природы.

Недостаток какого-либо элемента может привести к заболеванию и даже гибели организма, так как каждый элемент играет определенную роль. Макроэлементы первой группы составляют основу биополимеров – белков, углеводов, нуклеиновых кислот, а также липидов, без которых жизнь невозможна. Сера входит в состав некоторых белков, фосфор – в состав нуклеиновых кислот, железо – в состав гемоглобина, а магний – в состав хлорофилла. Кальций играет важную роль в обмене веществ.

Часть химических элементов, содержащихся в клетке, входит в состав неорганических веществ – минеральных солей и воды.

Минеральные соли находятся в клетке, как правило, в виде катионов (K+, Na+, Ca2+, Mg2+) и анионов (HPO42-, H2PO4-, Сl-, HCO3), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды. (У многих клеток среда слабощелочная и ее pH почти не изменяется, так как в ней постоянно поддерживается определенное соотношение катионов и анионов.)

Из неорганических веществ в живой природе огромную роль играет вода.

Без воды жизнь невозможна. Она составляет значительную массу большинства клеток. Много воды содержится в клетках мозга и эмбрионов человека: воды более 80%; в клетках жировой ткани – всего 40%. К старости содержание воды в клетках снижается. Человек, потерявший 20% воды, погибает.

Уникальные свойства воды определяют ее роль в организме. Она участвует в теплорегуляции, которая обусловлена высокой теплоемкостью воды – потреблением большого количества энергии при нагревании. Чем же определяется высокая теплоемкость воды?

B молекуле воды атом кислорода ковалентно связан с двумя атомами водорода. Молекула воды полярна, так как атом кислорода имеет частично отрицательный заряд, а каждый из двух атомов водорода имеет частично положительный заряд. Между атомом кислорода одной молекулы воды и атомом водорода другой молекулы образуется водородная связь. Водородные связи обеспечивают соединение большого числа молекул воды. При нагревании воды значительная часть энергии расходуется на разрыв водородных связей, что и определяет ее высокую теплоемкость.

Вода – хороший растворитель. Благодаря полярности ее молекулы взаимодействуют с положительно и отрицательно заряженными ионами, способствуя тем самым растворению вещества. По отношению к воде все вещества клетки делятся на гидрофильные и гидрофобные.

Гидрофильными (от греч. hidor – вода и fileo – люблю) называют вещества, которые растворяются в воде. К ним относят ионные соединения (например, соли) и некоторые неионные соединения (например, сахара).

Гидрофобными (от греч. hidor – вода и fobos – страх) называют вещества, нерастворимые в воде. К ним относят, например, липиды.

Вода играет большую роль в химических реакциях, протекающих в клетке в водных растворах. Она растворяет ненужные организму продукты обмена веществ и тем самым способствует выводу их из организма. Большое содержание воды в клетке придает ей упругость. Вода способствует перемещению различных веществ внутри клетки или из клетки в клетку.

12

Способность к делению - важнейшее свойство клеток. Без деления невозможно представить себе увеличение числа одноклеточных существ, развитие сложного многоклеточного организма из одной оплодотворенной яйцеклетки, возобновление клеток, тканей и даже органов, утраченных в процессе жизнедеятельности организма. Деление клеток осуществляется поэтапно.

На каждом этапе деления происходят определенные процессы. Они приводят к удвоению генетического материала (синтезу ДНК) и его распределению между дочерними клетками. Период жизни клетки от одного деления до следующего называется клеточным циклом. Подготовка к делению Эукариотические организмы, состоящие из клеток, имеющих ядра, начинают подготовку к делению на определенном этапе клеточного цикла, в интерфазе. Именно в период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются все важнейшие структуры клетки. Вдоль исходной хромосомы из имеющихся в клетке химических соединений синтезируется ее точная копия, удваивается молекула ДНК. Удвоенная хромосома состоит из двух половинок - хроматид. Каждая из хроматид содержит одну молекулу ДНК. Интерфаза в клетках растений и животных в среднем продолжается 10 - 20 ч. Затем наступает процесс деления клетки - митоз. Во время митоза клетка проходит ряд последовательных фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, какой был в материнской летке. Митоз (от греч. mitos- нить), непрямое деление, основной способ деления эукариотных клеток. Биол. значение М. состоит в строго одинаковом распределении редуплицированных хромосом между дочерними клетками, что обеспечивает образование генетически равноценных клеток и сохраняет преемственность в ряду клеточных поколений. В 1874 И. Д. Чистяков описал ряд стадий (фаз) М. в спорах плаунов, ещё не ясно представляя себе их последовательность. Детальные исследования по морфологии М. впервые были выполнены Э. Страсбургером на растениях (1876-79) и В. Флеммингом на животных (1882).

Продолжительность митоза в среднем 1-2 ч различна для разных видов клеток. Процесс зависит также и от условий внешней среды (температуры, светового режима и других показателей). Фазы митоза В процессе М. условно выделяют неск. стадий, постепенно и непрерывно переходящих друг в друга: профазу, прометафазу, метафазу, анафазу и телофазу. Длительность стадий М. различна и зависит от типа ткани, физиол. состояния организма, внеш. факторов;

наиб. продолжительны первая и последняя. В профазе хорошо видны центриоли - образования, находящиеся в клеточном центре и играющие роль в делении дочерних хромосом животных. (Напомним, что у высших растений нет центриолей в клеточном центре, который организует деление хромосом.) Мы же рассмотрим митоз на примере животной клетки, поскольку присутствие центриолей делает процесс деления клетки более наглядным. Центриоли делятся и расходятся к разным полюсам клетки.

От центриолей протягиваются микротрубочки, образующие нити веретена деления, которое регулирует расхождение хромосом к полюсам делящийся клетки. Важнейшие признаки профазы - конденсация хромосом, распад ядрышек и начало формирования веретена деления, снижение активности транскрипции (к концу профазы синтез РНК прекращается). Веретено деления образуется либо с участием центриолей, образуя митотический аппарат (в клетках животных и нек-рых низших растений), либо без них (в клетках высших растений и нек-рых простейших).

У водорослей, низших грибов и ряда простейших веретено может формироваться внутри ядра (т. н. закрытый М.). Прометафаза начинается распадом ядерной оболочки на фрагменты и беспорядочными движениями хромосом в центр. части клетки, соответствующей зоне бывшего ядра. При "закрытом М." оболочка ядра сохраняется в течение всего М. Хромосомы спирализуются и в результате этого укорачиваются и утолщаются, и их уже можно наблюдать

в световой микроскоп. Еще лучше они видны на следующей стадии митоза - метафазе. В Метафазе завершается формирование веретена деления. Хромосомы перестают двигаться и выстраиваются по экватору веретена, образуя экваториальную пластинку. При этом хорошо видно, что каждая хромосома, состоящая из двух хроматид, имеет перетяжку - центромеру (рис 2). Хромосомы своими центромерами прикрепляются к нитям веретена деления.

После деления центромеры каждая хроматида становится самостоятельной дочерней хромосомой. Синтез белка снижен на 20-30% по сравнению с интерфазой. На этой стадии М. клетки наиб. чувствительны к холоду, колхицину, его производным и др. агентам, воздействие к-рых разрушает веретено деления и приводит к пекращению деления клеток (К-митоз). При низких дозах повреждающих агентов нормальное течение

М. восстанавливается через несколько часов после их воздействи; более высокие дозы приводят либо к гибели клетки, либо к ее полиплоидизации. Анафаза - самая короткая стадия М. Характеризуется разделением сестринских хроматид и расхождением хромосом к противоположным полюсам клетки. Скорость их движения в среднем 0,2-5 мкм/мин. В ряде случаев движение хромосом к полюсам клетки сопровождается дополнит. расхождением полюсов друг от друга. Телофаза длится с момента прекращения движения хромосом до окончания процессов, связанных с реконструкцией дочерних ядер (десприрализация и активизация хромосом, образование ядерной оболочки, формирование ядрышек), с разрушением веретена деления, разделением тела материнской клетки на 2 дочерние и образованием (в клетках животных) остаточного тельца Флемминга. Она начинается после того, как дочерние хромосомы, состоящие из одной хроматиды, достигли

полюсов клетки. На этой стадии хромосомы вновь деспирализуются и приобретают такой же вид, какой они имели до начала деления клетки в интерфазе (длинные тонкие нити). Вокруг них возникает ядерная оболочка, а в ядре формируется ядрышко, в котором синтезируются рибосомы. В процессе деления цитоплазмы все органоиды (митохондрии, комплекс Гольджи, рибосомы и др.) распределяются между дочерними клетками более или менее равномерно.

По завершении цитотомии клетки вступают в интерфазу, к-рая начинается G 1 - периодом следующего клеточного цикла. Заключение В опытах с температурно-зависимыми мутантами дрожжей и клеточных линий млекопитающих показано, что протекание М. обусловливается активацией определённых генов и синтезом специфич. РНК и белка. Иногда М. считают только деление ядра (кариокинез), к-рое не всегда сопровождается цитотомией

- образованием двух отд. клеток. Таким образом, в результате митоза из одной клетки получаются две, каждая из которых имеет характерно для данного вида организма число и форму хромосом, а следовательно, постоянное количество ДНК. Биологическое значение митоза заключается в том, что он обеспечивает постоянство числа хромосом во всех клетках организма. В процессе митоза происходит распределение ДНК хромосом материнской клетки строго поровну между возникающими из нее двумя дочерними клетками.

В результате митоза все клетки тела, кроме половых, получают одну и ту же генетическую информацию. Такие клетки называются соматическими.

Деление клеток. У многоклеточных организмов деление клеток наряду с увеличением их размеров является способом роста всего организма. Новые клетки, образовавшиеся во время деления, сходны по структуре и функциям, как с родительской клеткой, так и между собой. Процесс деления у эукариот можно подразделить на две частично перекрывающиеся стадии: митоз и цитокинез.

Митоз – это образование из одного ядра двух дочерних ядер, морфологически и генетически эквивалентных друг другу. Цитокинез – это деление цитоплазматической части клетки с образованием дочерних клеток.

Клеточный цикл. Живая клетка проходи ряд последовательных событий, составляющих клеточный цикл. Продолжительность самого цикла варьирует в зависимости от типа клетки и внешних факторов, например от температуры или обеспеченности питательными веществами. Обычно цикл делится на интерфазу и четыре фазы митоза.

Интерфаза. Период между последовательными митотическими делениями.

Интерфазу делят на три периода, обозначаемые как G1, S, G2.

В период G1, который начинается после митоза. В этот период увеличивается количество цитоплазмы, включая различные органеллы. Кроме того, согласно современной гипотезе, в период G1 синтезируются вещества, которые либо стимулируют, либо ингибируют период S и остальную часть цикла, определяя, таким образом, процесс деления.

В период S следует за периодом G1, в это время происходит удвоение генетического материала (ДНК).

В период G2, который следует за S, формируются структуры, непосредственно участвующие в митозе, например, компоненты веретена.

Некоторые клетки проходит неограниченный ряд клеточных циклов. Это одноклеточные организмы и некоторые клетки зон активного роста (меристем). Некоторые специализированные клетки после созревания теряет способность к размножению. Третья группа клеток, например образующих раневую ткань (каллус), сохраняет способность делиться только в специальных условиях.

Митоз, или деление ядра. Это непрерывный процесс, подразделяемый на четыре фазы: профазу, метафазу, анафазу, телофазу. В результате митоза генетический материал, удвоившийся в интерфазе, делится поровну между двумя дочерними ядрами.

Одним из самых ранних признаков перехода клетки к делению служит появление узкого, кольцеобразного пояска из микротрубочек непосредственно под плазматической мембраной. Это относительно плотный поясок окружает ядро в экваториальной плоскости будущего митотического веретена. Так как он проявляется перед профазой, его называют препрофазным пояском. Он исчезает после митотического веретена, задолго до появления в поздней телофазе клеточной пластинки, которая растет от центра к периферии и сливается с оболочкой материнской клетки в области, ранее занятой препрофазным пояском.

Профаза. В начале профазы хромосомы напоминают длинные нити, разбросанные внутри ядра. Затем, по мере того как нити укорачиваются и утолщаются, можно увидеть, что каждая хромосома состоит не из одной, а из двух переплетенных нитей, называемых хроматидами. В поздней профазе две укороченные спаренные хроматиды каждой хромосомы лежат рядом параллельно, соединённые узким участком, называемым центромерой. Она имеет определённое положение на каждой хромосоме и делит хромосому на два плеча различной длины.

Микротрубочки располагаются параллельно поверхности ядра вдоль оси веретена. Это само раннее проявление сборки митотического веретена.

К концу профазы ядрышко постепенно теряет чёткие очертания и наконец исчезает. Вскоре после этого распадается и ядерная оболочка.

Метафаза. В начале метафазы веретено, которое представляет трёхмерную структуру, наиболее широкую в средине и суживающуюся к полюсам, занимает место, прежде занятое ядром. Нити веретена – это пучки микротрубочек. Во время метафазы хромосомы, состоящие из двух хроматид каждая, располагаются так, что их центромеры лежат в экваториальной плоскости веретена. Своей центромерой каждая хромосома прикрепляется к нитям веретена. Однако, некоторые нити проходят от одного полюса к другому, не прикрепляясь к хромосомам.

Когда все хромосомы расположатся в экваториальной плоскости, метафаза завершится. Хромосомы готовы к делению.

Анафаза. Хроматиды каждой хромосомы расходятся. Теперь это дочерние хромосомы. Прежде всего, делится центромера, и две дочерние хромосомы увлекаются к противоположным полюсам. При этом центромеры движутся впереди, а плечи хромосом тянутся сзади. Нити веретена, прикрепленные к хромосомам, укорачиваются , способствуя расхождению хроматид и движению дочерних хромосом в противоположные стороны.

Телофаза. В телофазе завершается обособление двух идентичных групп хромосом , при этом вокруг каждой из них формируется ядерная мембрана. В этом активное участие принимает шероховатый ретикулум. Аппарат веретена исчезает. В ходе телофазы хромосомы теряют чёткость очертаний, вытягиваются, превращаясь снова в тонкие нити. Ядрышки восстанавливаются. Когда хромосомы становятся невидимыми, митоз завершается. Два дочерние ядра вступают в интерфазу. Они генетически эквивалентны друг другу и материнскому ядру. Это очень важно, так как генетическая программа, а вместе с ней и все признаки должны быть переданы дочерним организмам.

Продолжительность митоза варьирует у различных организмов и она зависит от типа ткани. Однако профаза самая длинная, а анафаза самая короткая. В клетках кончика корня продолжительность профазы составляет 1 – 2 ч; метафазы – 5 – 15 мин; анафазы – 2 – 10 мин; телофазы – 10 – 30 мин. Продолжительность интерфазы составляет от 12 до 30 ч.

Во многих эукариотических клетках центры организации микротрубочек, ответственные за формирование митотического веретена, связаны с центриолями.

Цитокинез. Это процесс деления цитоплазмы. У большинства организмов клетки делятся путём втягивания клеточной оболочки и образования борозды деления, которая постепенно углубляется, сжимая оставшиеся нити митотического веретена. У всех растений (мохообразных и сосудистых) и у некоторых водорослей клетки делятся благодаря образованию клеточной пластинки.

В ранней телофазе между двумя дочерними ядрами формируется бочкообразная система волокон, называемая фрагмопластом. Волокна фрагмопласта, как и волокна митотического веретена, состоит из микротрубочек. В экваториальной плоскости фрагмопласта появляются мелкие капли. Они сливаются, образуя клеточную пластинку, которая растёт до тех пор, пока не достигнет оболочки делящейся клетки. На этом и завершается разделение двух дочерних клеток. Сливающиеся капельки – это пузырьки, отрывающиеся от аппарата Гольджи. В основном они содержат пектиновые вещества, из которых и формируется срединная пластинка. Мембраны пузырьков участвуют в построении плазматической мембраны по обеим сторонам пластинки. В это же время из фрагментов трубчатого эндоплазматического ретикулума образуются плазмодесмы.

После образования срединной пластинки каждый протопласт откладывает на ней первичную оболочку. Кроме того, каждая дочерняя клетка откладывает новый слой оболочки вокруг всего протопласта, которая продолжает оболочку, возникшую из клеточной пластинки. Исходная оболочка родительской клетки разрушается по мере роста дочерних клеток.

Различные типы митоза эукариот

Описанное выше деление клеток растений, животных тоже, - не единственная форма непрямого деления клеток. Наиболее простой тип митоза - плевромитоз. Он напоминает бинарное деление прокариотических клеток, у которых нуклеоиды после репликации остаются связанными с плазматической мембраной. Мембрана начинает расти между точками связывания ДНК и тем самым разносит хромосомы в разные участки клетки. После этого при образовании клеточной перетяжки каждая из молекул ДНК окажется в новой отдельной клетке.

Характерным для деления эукариотических клеток является образование веретена, построенного из микротрубочек. При закрытом плевромитозе (закрытым он называется потому, что расхождение хромосом происходит без нарушения ядерной оболочки) в качестве центров организации микротрубочек (ЦОМТ) участвуют не центриоли, а другие структуры, находящиеся на внутренней стороне ядерной мембраны. Это так называемые полярные тельца неопределённой морфологии, от которых отходят микротрубочки. Этих телец два. Они расходятся друг от друга, не теряя связи с ядерной оболочкой. В результате этого образуются два полуверетена, связанные с хромосомами. Весь процесс образования митотического веретена и расхождения хромосом в этом случае происходит под ядерной оболочкой. Такой тип митоза встречается среди простейших, широко распространён у грибов (хитридиевые, зигомицеты, дрожжи, оомицеты, аскомицеты, миксомицеты и др.). встречаются формы полузакрытого плевромитоза, когда на полюсах сформированного веретена ядерная оболочка разрушается.

Следующей формой митоза является ортомитоз. В этом случае ЦОМТ располагаются в цитоплазме, с самого начала идёт образование не полуверетён, а двухполюсного веретена. Существует три формы ортомитоза (обычный митоз), полузакрытый и закрытый. При полузакрытом ортомитозе образуется бисимметричное веретено с помощью расположенных в цитоплазме ЦОМТ, ядерная оболочка сохраняется в течении всего митоза, за исключением полярных зон. В качестве ЦОМТ могут обнаруживаться массы гранулярного материала или даже центриоли. Эта форма митоза встречается у зооспор зелёных, бурых, красных водорослей, у некоторых низших грибов и грегарин. При закрытом ортомитозе полностью сохраняется ядерная оболочка, при которой образуется настоящее веретено. Микротрубочки формируются в кариоплазме, реже отрастают от внутреннего ЦОМТ, не связанного (в отличие от плевромитоза) с ядерной оболочкой. Такого типа митозы характерны для деления микронуклеусов инфузорий, но могут встречаться и у простейших. При открытом ортомитозе ядерная оболочка полностью распадается. Этот тип деления клеток характерен для животных организмов, некоторых простейших и для клеток высших растений. Эта форма митоза в свою очередь представлена астральным и анастральным типами.

Из кратко рассмотренного материала видно, что главной особенностью митоза вообще является возникновение структур веретена деления, образующегося в связи с разнообразными по своему строению ЦОМТ.

Морфология митотической фигуры

Митотический аппарат особенно хорошо бывает выражен на стадии метафазы митоза. В метафазе в экваториальной плоскости клетки располагаются хромосомы, от которых в противоположных направлениях тянутся так называемые нити веретена, сходящиеся на двух разных полюсах митотической фигуры. Таким образом митотическое веретено – это совокупность хромосом, полюсов и волокон. Волокна веретена представляют собой одиночные микротрубочки или их пучки. Начинаются микротрубочки от полюсов веретена, и часть из них направляется к центромерам, где расположены кинетохоры хромосом (кинетохорные микротрубочки), часть проходит дальше по направлению к противоположному полюсу, однако до него не доходит. Они называются «межполюсные микротрубочки». От полюсов отходит группа радиальных микротрубочек, образуя вокруг них структуру, напоминающую «лучистое сияние» - это астральные микротрубочки.

По морфологии митотические фигуры делятся на астральный и анастральный тип.

Астральный тип веретена, или конвергентный, характеризуется тем, что его полюсы представлены небольшой зоной, к которой сходятся (конвергируют) микротрубочки. Обычно в полюсах астральных веретен располагаются центросомы, содержащие центриоли. Однако известны случаи бесцентриолярных астральных митозов (при мейозе некоторых беспозвоночных). Кроме того, отмечаются, расходящиеся от полюсов, радиальные микротрубочки, не входящие в состав веретена, но образующие звёздчатые зоны – цитастеры. Такой тип митотического деления напоминает гантель. Анастральный тип митотической фигуры не имеет на полюсах цитастеров. Полярные области веретена здесь широкие , их называют полярными шапочками, в их состав входят центриоли. В этом случае волокна веретена не отходят от одной точки, а расходятся широким фронтом (дивергируют) от всей зоны полярных шапочек. Этот тип веретена характерен для делящихся клеток высших растений, но может встречаться и у высших животных. В раннем эмбриогенезе млекопитающих при делении созревания ооцита и при I и II делении зиготы наблюдаются бесцентриолярные (дивергентные) митозы. Но уже в третьем клеточном делении и во всех последующих клетки делятся при участии астральных веретён, в полюсах которых всегда обнаруживаются центриоли. В целом же для всех форм митоза общими структурами остаются хромосомы с их кинетофорами, полярные тельца (центросомы) и волокна веретена.

Центромеры и кинетохоры

Центромеры могут иметь различную локализацию по длине хромосом. Голоцентрические центромеры встречаются в том случае, когда микротрубочки связаны по длине всей хромосомы (некоторые насекомые, нематоды, некоторые растения). Моноцентрические центромеры – когда микротрубочки связаны с хромосомами в одном участке. моноцентрические центромеры могут быть точечными (например, у некоторых почкующихся дрожжей), когда к кинетохору подходит всего лишь одна микротрубочка, и зональными, где к сложному кинетохору подходит пучок микротрубочек. Несмотря на разнообразие зон центромер, все они связаны со сложной структурой кинетохора, имеющего принципиальное сходство строения и функций у всех эукариот. Кинетохоры – специальные белковые структуры, большей частью располагающиеся в зонах центромер хромосом. Это сложные комплексы, состоящие из многих белков. морфологически они очень сходны, имеют одинаковое строение, начиная от диатомовых водорослей, кончая человеком. Представляют собой трёхслойные структуры: внутренний плотный слой, примыкающий к телу хромосомы, средний рыхлый слой и внешний плотный слой. От внешнего слоя отходят множество фибрилл, образуя так называемую фиброзную корону кинетохора. В общей форме кинетохоры имеют вид пластинок или дисков, лежащих в зоне первичной перетяжки хромосомы, в центромере. На каждую хромосому или хроматиду обычно приходится по одному кинетохору. До анафазы кинетохоры на каждой сестринской хроматиде располагаются , связываясь каждый со своим пучком микротрубочек. У растений кинетохор имеет вид не пластинок, а полусфер. Функциональная роль кинетохоров заключается в связывании между собой сестринских хроматид, в закреплении митотических микротрубочек, в регуляции разъединения хромосом и в собственно движении хромосом во время митоза при участии микротрубочек. В общем белковые структуры, кинетохоры удваиваются в S-периоде, параллельно удвоению хромосом. Но их белки присутствуют на хромосомах во всех периодах клеточного цикла.

13

ФОТОСИНТЕЗ

— процесс образования органических веществ с использованием энергии солнечного света. Первоначальные формы жизни, по-видимому, существовали за счет энергии органич. веществ, находящихся в Мировом океане (см. Жизнь). С увеличением сложности организации живой материи и разнообразия форм ее существования потребовался постоянный и неисчерпаемый источник энергии. Этому требованию целиком отвечало Солнце, посылающее на Землю громадное количество энергии в виде солнечного (электромагнитного) излучения. Нек-рые виды организмов приобрели способность непосредственно использовать энергию солнечного света для превращения неорганических веществ, в избытке имеющихся на Земле, в органические вещества. Этому способствовало возникновение в результате неизвестных генных мутаций (см. Мутагенез) особого вещества — хлорофилла. Хлорофилл — зеленый пигмент, имеющийся у всех современных растений, действует как катализатор процесса соединения воды и углекислого газа, протекающего с использованием энергии солнечного света. В результате фотосинтеза образуются свободный кислород, попадающий в атмосферу, органич. вещества (в первую очередь углеводы), а также высокоэргические соединения (т. е. вещества, «запасающие» энергию в виде, удобном для последующего использования ее в процессе жизнедеятельности). Т. о., с помощью процесса Ф. создается запас органич. веществ и энергии, обеспечивающий потребности в них у других организмов, не способных к самостоятельному синтезу органич. веществ из неорганических. Практически вся используемая живыми организмами энергия обеспечивается деятельностью зеленых растений, или, другими словами, процессом Ф.

Фотосинтез оказал огромное влияние на дальнейшую эволюцию жизни на Земле. В период возникновения жизни на Земле не было свободного кислорода и живые организмы получали энергию из пищи с помощью процесса брожения, или анаэробного дыхания. Однако этот путь, сохранившийся и до наших дней у нек-рых видов бактерий, а также на нек-рых этапах обмена веществ у высших организмов (см. Обмен веществ и энергии), оказался малоэффективным, т. к. при этом высвобождается мало энергии. Как только в атмосфере Земли появился свободный кислород, возник новый, более совершенный тип высвобождения энергии из пищи — путь аэробного дыхания, при к-ром питательные вещества окисляются за счет кислорода с образованием углекислого газа, воды и выделения большого количества энергии (в 20 раз большего, чем при брожении).

Высокая эффективность такого типа дыхания способствовала возникновению большого разнообразия форм жизни и усложнению ее организации. Одновременно углекислый газ и вода, образующиеся в процессе аэробного дыхания, мог5гт вновь использоваться зелеными растениями. С появлением в процессе Ф. свободного кислорода и накоплением его в атмосфере произошло постепенное окисление ядовитых газов первичной атмосферы (аммиака — до свободного азота, метана — до углекислого газа и т. д.), в результате чего газовый состав атмосферы стал близок к современному. Известно, что возникновение жизни в конечном итоге стало возможным только благодаря Солнцу, посылающему на Землю энергию в виде солнечного излучения. Однако в состав его входит и ионизирующее («жесткое») излучение, при определенных условиях губительно воздействующее на все живое. Именно поэтому жизнь зародилась в океане, так как вода хорошо поглощает ионизирующее излучение. Природой был выработан еще один механизм, защищающий живое от действия этого фактора, и главную роль в этом сыграл процесс Ф. Кислород, выделяемый в ходе Ф. и попавший в верхние слои атмосферы, превратился там в озон, активно поглощающий ионизирующее излучение. Так на Земле были созданы условия для «выхода» жизни из воды на сушу. Постепенно между организмами, осуществляющими Ф., и организмами, не способными к самостоятельному синтезу питательных веществ, установилось равновесие. Подсчитано, что запас кислорода в атмосфере полностью исчез бы за 2000 лет, если бы фотосинтезирующие организмы не восполняли бы его. Одновременно, если бы не было животных и бесхлорофилльных растений (грибов, нек-рых водорослей), содержание углекислого газа в атмосфере падало бы, что отрицательно сказалось бы на жизнедеятельности зеленых растений. Т. о., между миром зеленых растений, осуществляющих Ф., и миром животных —■ основного потребителя продукции Ф.— существует равновесие. Однако производственная и преобразующая деятельность человека способна нарушить это равновесие, т. к. вырубка лесов, распашка полей, строительство дорог, городов, бурное развитие транспорта, сжигающего сотни миллионов тонн горючего (а значит, и кислорода атмосферы) и выделяющего громадное количество углекислого газа, загрязнение окружающей среды ядовитыми отходами и другие последствия деятельности человека отрицательно сказываются на растительном и животном мире планеты (см. Экология). Поэтому во многих странах мира, в т. ч. и в нашей стране, разрабатываются и претворяются в жизнь многочисленные мероприятия, направленные на сохранение окружающей среды (см. Охрана окружающей среды)

14-19

ТКАНИ РАСТЕНИЙ

Образовательные ткани (меристемы)

Образовательные ткани в теле растений располагаются в разных местах, поэтому их делят на следующие группы (рис 0;1).

  1. Верхушечные (апикальные) меристемы располагаются на верхушках, или апексах, осевых органов – стебля, корня. С помощью этих меристем вегетативные органы растений осуществляют свой рост в длину.

  2. Латеральные меристемы характерны для осевых органов. Там они располагаются концентрически, в виде муфты.

  3. Интеркалярные, или вставочные, меристемы происходят от верхушечных меристем. Это группы клеток, еще не способных размножаться, однако вставшие на путь дифференциации. Инициальных клеток среди них нет, но много специализированных.

  4. Раневые меристемы обеспечивают восстановление поврежденной части тела. Регенерация начинается с дедифференциации, то есть обратного развития от специализированных клеток к меристематическим. Они превращаются в феллоген, который образует пробку, покрывающую поверхность раны. Дедифференцированные клетки, делясь, могут формировать рыхлую паренхиматозную ткань – каллус. Из него при определенных условиях образуются органы растений.

Покровные ткани

Они исполняют роль пограничного барьера, отделяя ниже лежащие ткани от окружающей среды. Первичные покровы растения состоят только из живых клеток. Вторичные и третичные покровы – в основном из мертвых с толстыми клеточными стенками.

Основные функции покровных тканей:

  • защита растения от высыхания;

  • защита от попадания вредных микроорганизмов;

  • защита от солнечных ожогов;

  • защита от механических повреждений;

  • регуляция обмена веществ между растением и окружающей средой;

  • восприятие раздражения.

Первичная покровная ткань – эпидерма, эпидермис. Состоит из живых клеток. Образуется из апикальных меристем. Покрывает молодые растущие стебли и листья.

Эпидерма сформировалась у растений в связи с выходом из водной среды обитания на сушу с целью предотвращения от высыхания. Кроме устьиц, все клетки эпидермы плотно соединены между собой. Наружные стенки основных клеток толще остальных. Вся поверхность покрыта слоем кутина и растительных восков. Этот слой называется кутикулой (кожица). Она отсутствует на растущих корнях и подводных частях растений. При пересыхании проницаемость кутикулы значительно ослабляется.

Кроме основных клеток, в эпидермисе имеются и другие, в частности волоски, или трихомы. Они бывают одноклеточными и многоклеточными (рис.2). Функционально они увеличивают поверхность эпидермы, например, в зоне роста корня, служить механической защитой, цепляться за опору, уменьшать потери воды. Ряд растений имеют железистые волоски, например, крапива.

Только у высших растений в эпидермисе имеются устьица, которые регулируют обмен воды и газов. Если кутикулы нет, то и отсутствует потребность в устьицах. Устьица – это группа клеток, образующих устьичный аппарат, который состоит из двух замыкающих клеток и примыкающих к ним клеток эпидермы – побочных клеток. Они отличаются от основных эпидермальных клеток (рис.3). Замыкающие клетки отличаются от окружающих их клеток формой и присутствием большого количества хлоропластов и неравномерно утолщенными стенками. Те, которые обращены друг к другу, толще остальных (рис.4). Между замыкающими клетками образуется устьичная щель, которая ведет в подустьичное пространство, называемое подустьичной полостью. Замыкающие клетки обладают высокой фотосинтетической активностью. В них содержится большое количество запасного крахмала и многочисленные митохондрии.

Число и распределение устьиц, типы устьичных аппаратов широко варьирует у различных растений. Устьица у современных мохообразных отсутствуют. Фотосинтез у них осуществляет гаметофитное поколение, а спорофиты к самостоятельному существованию не способны.

Обычно устьица располагаются на нижней стороне листа. У плавающих на водной поверхности растений – на верхней поверхноси. У листьев злаков устьица часто располагаются равномерно с обеих сторон. Такие листья освещаются сравнительно равномерно. На 1мм2 поверхности может располагаться от 100 до 700 устьиц.

Вторичная покровная ткань (перидерма). Эта ткань приходит на смену эпидерме, когда зеленый цвет однолетних побегов сменяется коричневым. Она многослойна и состоит из центрального слоя камбиальных клеток - феллогена. Клетки феллогена, делясь, наружу откладывают слой феллемы, а внутрь – феллодерму (рис.5).

Феллема, или пробка. Сначала состоит из живых тонкостенных клеток. Со временем их стенки пропитываются суберином и растительными восками и отмирают. Содержимое клетки наполняется воздухом.

Функции феллемы:

  • предотвращает потерю влаги;

  • защищает растение от механических повреждений;

  • защищает от болезнетворных микроорганизмов;

  • обеспечивает термоизоляцию, так как клетки заполнены воздухом.

Клетки феллогена, расположенного в самой эпидерме, подлежащем субэпидермальном слое, реже – в глубоких слоях первичной коры, являются генерирующей основой первичной коры.

Слой пробки не постоянен. В нем происходят разрывы, которые сообщаются с межклетниками, расположенными рядом. При этом на поверхности образуются небольшие бугорки – чечевички, которые сообщают пространства межклетников с атмосферным воздухом (рис.6,7).

Осенью феллоген под чечевичками откладывает слой опробковевших клеток, сильно уменьшающих транспирацию, но не исключающий ее полностью. Весной этот слой изнутри разрушается. На светлой коре березы чечевички хорошо заметны в виде темных черточек.

Третичная покровная ткань (корка), так же характерна только для древесных форм растений.

Феллоген многократно закладывается в более глубоких слоях коры. Ткани, которые оказываются снаружи от него, со временем отмирают, образуя корку. Клетки ее мертвы и не способны к растяжению. Однако расположенные глубже живые клетки делятся, что приводит к увеличению поперечного размера ствола. Со временем наружный слой корки разрывается. Время наступления такого разрыва является довольно постоянной величиной для конкретных растений. У яблони это происходит на седьмом году жизни, у граба – на пятидесятом. У некоторых видов не происходит совсем. Основная функция корки – защита от механических и термических поражений.

Паренхима

Она представляет собой группу специализированных тканей, заполняющих пространства внутри тела растения между проводящими и механическими тканями (рис. 8). Чаще клетки паренхимы имеют округлую, реже вытянутую форму. Характерно наличие развитых межклетников. Пространства между клетками совместно образуют транспортную систему - апопласт. Кроме этого, межклетники образуют «систему вентиляции» растения. Через устьица, или чечевички, они связаны с атмосферным воздухом и обеспечивают оптимальный газовый состав внутри растения. Особенно необходимы развитые межклетники для растений, произрастающих на заболоченной почве, где нормальный газообмен затруднен. Такую паренхиму называют аэренхимой (рис. 9).

Элементы паренхимы, заполняя промежутки между другими тканями, выполняют также функцию опоры. Клетки паренхимы живые, у них нет толстых клеточных стенок, как у склеренхимы. Поэтому механические свойства обеспечиваются тургором. Если содержание воды падает, что приводит к плазмолизу и завяданию растения.

Ассимиляционная паренхима образована тонкостенными клетками со множеством межклетников. Клетки этой структуры содержат множество хлоропластов, поэтому ее называют хлоренхимой. Хлоропласты располагаются вдоль стенки, не затеняя друг друга. В ассимиляционной паренхиме происходят реакции фотосинтеза, которые обеспечивают растение органическими веществами и энергией. Результат фотосинтетических процессов – это возможность существования всех живых организмов Земли.

Ассимиляционные ткани представлены только в освещенных частях растения, от окружающей среды они отделены прозрачной эпидермой. Если на смену эпидерме приходят непрозрачные вторичные покровные ткани, ассимиляционная паренхима исчезает.

Запасающая паренхима служит вместилищем органических веществ, которые временно не используются растительным организмом. В принципе откладывать органические вещества в виде различного рода включений способна любая клетка с живым протопластом, однако на этом специализируются некоторые клетки (рис 10, 11). Богатые энергией соединения откладываются только в вегетационный период, расходуются в период покоя и при подготовке к очередной вегетации. Поэтому запасные вещества откладываются в вегетативных органах только у многолетних растений.

Вместилищем запасов могут быть обычные органы (побег, корень), а так же специализированные (корневища, клубни, луковицы). Все семенные растения запасают энергетически ценные вещества в семенах (семядолях, эндосперме). Многие растения засушливого климата, запасают не только органические вещества, но и воду (рис. 12). Например, алоэ запасает воду в мясистых листьях, кактусы в побегах.

Механические ткани

Механические свойства растительных клеток обеспечиваются:

  • жесткой оболочкой клетки;

  • тургесцентностью, то есть тургорным состоянием клеток.

Несмотря на то, что механическими свойствами обладают практически все клетки тканей, однако в растении есть ткани, для которых механические свойства являются основными. Это колленхима и склеренхима. Они обычно функционируют при взаимодействии с другими тканями. Внутри тела растения образуют своеобразный каркас. Поэтому их называют арматурными.

Не у всех растений одинаково хорошо выражены механические ткани. Значительно в меньшей степени во внутренней опоре нуждаются растения, живущие в водной среде, чем наземные. Причина в том, что водные растения нуждаются во внутренней опоре в меньшей степени. Их тело в значительной степени поддерживается окружающей водой. Воздух на суше подобной поддержки не создает, так как по сравнению с водой имеет меньшую плотность. Именно по этой причине становится актуальным наличие специализированных механических тканей.

Совершенствование внутренних опорных структур происходило в процессе эволюции.

Колленхима. Образована только живыми клетками, вытянутыми вдоль оси органа. Этот вид механических тканей формируется очень рано, в период первичного роста. Поэтому важно, чтобы клетки оставались живыми и сохраняли способность растягиваться вместе с растягивающимися клетками, которые находятся рядом.

Особенности клеток колленхимы:

  • неравномерные утолщения оболочки, в результате чего одни участки её остаются тонкими, а другие утолщаются;

  • оболочки не одревесневают.

Клетки колленхимы располагаются по-разному относительно друг друга. У находящихся рядом клеток на обращенных друг к другу уголках образуются утолщения (рис. 13). Такая колленхима называется уголковой. В другом случае клетки располагаются параллельными слоями. Оболочки клеток, обращенные к этим слоям, сильно утолщены. Это пластинчатая колленхима. Клетки могут располагаться рыхло, с обильными межклетниками – это рыхлая колленхима. Такая колленхима часто встречается у растений на переувлажнённых почвах.

Колленхима имеет особое значение у молодых растений, травянистых форм, а также в частях растений, где вторичный рост не происходит, например, в листьях. В этом случае она закладывается очень близко к поверхности, иногда сразу под эпидермой. Если орган имеет грани, то по их гребням обнаруживают мощные слои колленхимы.

Клетки колленхимы функциональны только при наличии тургора. Дефицит воды снижает эффективность колленхимы и растение временно завядает, например, обвисающие в жаркий день листья огурцов. После наполнения клеток водой функции колленхимы восстанавливаются.

Склеренхима. Второй тип механических тканей. В отличие от колленхимы, где все клетки живые, клетки склеренхимы мертвы. Их стенки очень толстые. Они и выполняют механическую функцию. Сильное утолщение оболочки приводит к нарушению транспорта веществ, в результате чего гибнет протопласт (рис. 14). Одревеснение оболочек клеток склеренхимы наступает, когда орган растения уже завершил свой рост. Поэтому они уже не препятствуют растяжению окружающих тканей.

В зависимости от формы различат два типа клеток склеренхимы - волокна и склереиды.

Волокна имеют сильно вытянутую форму с очень толстыми стенками и небольшой полостью. Они несколько меньше древесных волокон. Часто под эпидермой образуют продольные слои и тяжи. Во флоэме или ксилеме их можно обнаружить поодиночке или группами. Во флоэме их называют лубяными волокнами (рис. 15), а в ксилеме – волокнами либриформа (рис. 16).

Склереиды, или каменистые клетки, представлены округлыми или ветвистыми клетками с мощными оболочками. В теле растения они могут находиться поодиночке (опорные клетки) (рис.17) или группами (рис.18). Необходимо отметить, что механические свойства сильно зависят от расположения склереид. Часть склереиды образуют сплошные слои, как, например, в скорлупе орехов или в косточках плодов (косточковых).

Выделительные ткани

Любая живая клетка изначально обладает функцией выведения веществ, при этом транспорт может идти как по градиенту концентрации, так и против градиента. Удаляться могут вещества, которые были синтезированы в клетке, и впоследствии будут оказывать воздействие на деятельность других клеток (фитогормоны, ферменты). Такой процесс называется секрецией. В случае, когда выводятся вещества, которые являются отходами жизнедеятельности клетки, процесс называется экскрецией. Несмотря на то, что выведение веществ у клеток растений и животных имеет принципиальное сходство, у растений наблюдается ряд особенностей, которые происходят из фундаментальных различий в жизнедеятельности. Уровень обменных реакций у растений значительно ниже, чем у животных. Поэтому выделяются пропорционально меньшие количества отходов. Другая особенность состоит в том, что, самостоятельно синтезируя практически все необходимые органические соединения, растения никогда не образуют чрезмерные их запасы. Выделяемые вещества могут служить исходным материалом для других реакций (например, СО2 и Н2О).

Если у животных процесс выделения шлаков связан с выведением их из организма, растения могут этого и не делать, изолируя ненужные вещества в живом протопласте (выведение в вакуоль разнообразных веществ), в мёртвых клетках (большинство тканей многолетнего растения состоит из таких клеток), в межклеточных пространствах.

Выделяемые вещества можно разделить на две большие группы. Первая группа – это органические вещества, синтезируемые непосредственно клеткой (ферменты, полисахариды, лигнины, терпены, последние являются составными элементами эфирных масел и смол). Вторая группа – вещества, первоначально поступающие в клетку извне с помощью ксилемного или флоэмного транспорта (вода, минеральные соли, аминокислоты, моносахара и др.). Выделяемый секрет редко бывает однородным и обычно состоит из смеси, наибольшую концентрацию в которой имеет одно вещество.

У растений в отличие от животных отсутствует целостная выделительная система. Имеются только лишь специализированные структуры, разбросанные по всему растению – идиобласты. Образующие их клетки меньше клеток паренхимы, лежащих рядом. Они имеют электронноплотную цитоплазму, с развитыми элементами эндоплазматической сети и комплекса Гольджи. Чаще всего не выражена, бывает центральная вакуоль. Между собой и другими живыми клетками эти клетки связаны многочисленными плазмодесмами.

В зависимости от расположения выделительные ткани могут быть наружные и внутренние.

Наружные выделительные ткани. Железистые волоски являются производными эпидермы. Морфологически они вариабельны – могут иметь многоклеточную головку, быть вытянутыми, в виде щитка на ножке и т.д. (рис.19). Кним относятся жгучие волоски крапивы.

Гидатоды – это структуры, осуществляющие выделение избыточной воды в условиях пониженной транспирации и высокой влажности – гуттацию. Эти структуры образованы группами бесцветных живых клеток с тонкими стенками – эпитемой. Эта ткань прилегает к проводящему пучку (рис.20). Вода выделяется через особые водяные устьица, которые от обычных устьиц отличаются неподвижностью и постоянно открытой щелью. Состав гуттационной жидкости широко варьирует от почти чистой воды до очень сложной смеси веществ.

Нектарники. Для многих растений характерно выделение жидкости, содержащей от 7 до 87% моно- и олигосахаридов. Этот процесс осуществляется особыми структурами – нектарниками. В зависимости от расположения различают цветковые, или флоральные, нектарники (рис. 21), а также расположенные на стеблях, листьях растения – внецветковые, или экстрафлоральные нектарники. Нектар может представлять собой неизменённый флоэмный сок, который по межклетникам доставляется к поверхности и выводится через устьица. Более сложные нектары образованы железистой паренхимой, покрытой эпидермой с железистыми волосками. Нектар выводится или клетками эпидермы, или железистыми волосками. В этом случае выделяемый нектар отличается от флоэмного сока. Так как в нем преобладают глюкоза, фруктоза, сахароза, а во флоэмном соке – глюкоза. В небольшой концентрации содержатся ионы. В небольшой концентрации содержатся ионы. Для привлечения опылителей, в нектаре могут находиться стероидные гормоны, которые необходимы для насекомых.

Пищеварительные желёзки присутствуют у насекомоядных растений (росянка, непентис и др.). В ответ на прикосновение мелких беспозвоночных животных они выделяют секрет, содержащий гидролитические ферменты, муравьиную, масляную и пропионовую кислоту. В итоге биополимеры расщепляются до мономеров, которые используются растением для своих нужд.

Солевые железы развиваются у растений, произрастающих на засолённых почвах. Железы эти располагаются на листьях и в растворённом виде избыток ионов выводят на поверхность. Соль сначала откладывается на кутикуле, затем она смывается дождём (рис.22). Кроме того, многие растения имеют на листьях солевые волоски. Каждый волосок состоит из двух клеток: одна образует головку, другая – ножку. Соли накапливаются в вакуоли клетки-головки, и когда их концентрация становится высокой, головка отпадает. На её месте вырастает новая клетка, которая также накапливает соли. В течение роста листа головка может отпадать и образовываться несколько раз. Преимущество солевых волосков состоит в том, что, выделяя соли, они теряют мало воды. Такое явление очень важно для растений, произрастающих на засоленных почвах, где пресной воды не хватает.

Внутренние выделительные ткани. Внутренние выделительные структуры, разбросанные по всему телу растения в виде идиобластов, вещества за пределы организма не выводят, накапливая их в себе. Идиобласты – растительные клетки, отличающиеся по форме, структуре или содержимому от остальных клеток той же ткани. В зависимости от происхождения различают схизогенные (греч. schiso – раскалываю) и лизогенные (греч. lysis – растворение) вместилища выделяемых веществ (рис.23).

Схизогенные вместилища. Это боле или менее обширные межклетники, заполненные выделяемыми веществами. Например, смоляные ходы хвойных, аралиевых, зонтичных и других. Считают, что смола обладает бактерицидными свойствами, отпугивает травоядных животных, делая растения для них несъедобными.

Лизигенные вместилища образуются на месте живых клеток, которые погибают и разрушаются после накопления в них веществ. Такие образования можно наблюдать в кожуре плодов цитрусовых.

Кроме основных типов, имеются промежуточные формы. Млечники – бывают двух типов: членистые и нечленистые. Первые образуются из многих живых клеток, расположенных цепочками. В месте контакта оболочки разрушаются, протопласты сливаются, и вследствие этого формируется единая сеть. Такие млечники встречаются у сложноцветных. Нечленистые млечники образуются гигантской многоядерной клеткой. Она возникает на ранних этапах развития, удлиняется и ветвится по мере роста растения, образуя сложную сеть, например, у молочайных растений (рис.25).

Клеточные стенки млечников сильно обводнены. Они не одревесневают и поэтому пластичны. Центральную часть млечника занимает вакуоль с латексом, а протопласт занимает околостенное положение. Границу между протопластом и вакуолью не всегда можно определить. Млечники проникают в области расположения меристемы и растут вместе с органом растения.

Проводящие ткани

Этот тип относится к сложным тканям, состоит из по-разному дифференцированных клеток. Кроме собственно проводящих элементов, в ткани присутствуют механические, выделительные и запасающие элементы (рис.26). Проводящие ткани объединяют все органы растения в единую систему. Выделяют два типа проводящих тканей: ксилему и флоэму (греч.xylon – дерево; phloios – кора, лыко). Они имеют как структурные, так и функциональные различия.

Проводящие элементы ксилемы образованы мертвыми клетками. По ним осуществляется дальний транспорт воды и растворённых в ней веществ от корня к листьям. Проводящие элементы флоэмы сохраняют живой протопласт. По ним осуществляется дальний транспорт от фотосинтезирующих листьев к корню.

Обычно ксилема и флоэма располагаются в теле растения в определённом порядке, образуя слои или проводящие пучки. В зависимости от строения различают несколько типов проводящих пучков, которые характерны для определённых групп растений. В коллатеральном открытом пучке между ксилемой и флоэмой находится камбий, обеспечивающий вторичный рост (рис.27-А, 28). В биколлатеральном открытом пучке флоэма располагается относительно ксилемы с двух сторон (рис.27-Б, 29). Закрытые пучки не содержат камбия, а отсюда к вторичному утолщению не способны (рис27-Б, 27-Г, 30,31). Можно встретить ещё два типа концентрических пучков, где или флоэма окружает ксилему (рис27-Д, 32), или ксилема – флоэму (рис. 27-Е).

Ксилема (древесина). Развитие ксилемы у высших растений связано с обеспечением водного обмена. Так как чрез эпидерму постоянно выводится вода, такое же количество влаги должно поглощаться растением и добавляться к органам, которые осуществляют транспирацию. Следует учитывать, что наличие живого протопласта в проводящих воду клетках сильно замедляло бы транспорт, мёртвые клетки здесь оказываются более функциональными. Однако мёртвая клетка не обладает тургесцентностью, поэтому механическими свойствами должна обладать оболочка. Примечание: тургесценция – состояния растительных клеток, тканей и органов, при которых они становятся упругими вследствие давления содержимого клеток на их эластичные оболочки. Действительно, проводящие элементы ксилемы состоят их вытянутых вдоль оси органа мертвых клеток с толстыми одревесневшими оболочками.

Первоначально ксилема образуется из первичной меристемы - прокамбия, расположенного на верхушках осевых органов. Вначале дифференцируется протоксилема, затем метаксилема. Известно три типа формирования ксилемы. При экзархном типе элементы протоксилемы сначала появляются на периферии пучка прокамбия, затем в центре возникают элементы метаксилемы. Если процесс идёт в противоположном направлении (т.е. от центра к периферии), то это эндархный тип. При мезархном типе ксилема закладывается в центре прокамбиального пучка, после чего откладывается как по направлению к центру, так и к периферии.

Для корня характерен экзархный тип закладки ксилемы, для стеблей – эндархный. У низкоорганизованных растений способы формирования ксилемы очень разнообразны и могут служить систематическими характеристиками.

У некоторых растений (например, однодольных) все клетки прокамбия дифференцируются в проводящие ткани, которые не способны к вторичному утолщению. У других же форм (например, древесных) между ксилемой и флоэмой остаются латеральные меристемы (камбий). Эти клетки способны делиться, обновляя ксилему и флоэму. Такой процесс называется вторичным ростом. У многих, произрастающих в сравнительно стабильных климатических условиях, растений, рост идёт постоянно. У форм , приспособленных к сезонным изменениям климата, - периодически. В результате этого образуются хорошо выраженные годовые кольца прироста.

Основные этапы дифференциации клеток прокамбия. Её клетки с тонкими оболочками, не препятствующими их растяжению при росте органа. Затем протопласт начинает откладывать вторичную оболочку. Но этот процесс имеет выраженные особенности. Вторичная оболочка откладывается не сплошным слоем, что не позволило бы клетке растягиваться, а в виде колец или по спирали. Удлинение клетки при этом не затруднено. У молодых клеток кольца или витки спирали расположены близко друг к другу. У зрелых клеток расходятся в результате растяжения клетки (рис.33). Кольчатые и спиральные утолщения оболочки росту не препятствуют, однако механически они уступают оболочкам, где вторичное утолщение образует сплошной слой. Поэтому после прекращения роста в ксилеме формируются элементы со сплошной одревесневшей оболочкой (метаксилемой). Следует отметить, что вторичное утолщение здесь не кольчатое или спиральное, а точечное, лестничное, сетчатое (рис.34). Её клетки растягиваться, не способны и в течение нескольких часов отмирают. Этот процесс у расположенных поблизости клеток происходит скоординировано. В цитоплазме появляется большое количество лизосом. Затем распадаются , а находящиеся в них ферменты разрушают протопласт. При разрушении поперечных стенок расположенные цепочкой друг над другом клетки образуют полый сосуд (рис.35). Большинство покрытосеменных растений и некоторых папоротникообразных обладают сосудами.

Проводящую клетку не образующую сквозных перфораций в своей стенке, называют трахеидой. Передвижение воды по трахеидам идёт с меньшей скоростью, чем по сосудам. Дело в том, что у трахеидов нигде не прерывается первичная оболочка. Между собой трахеиды сообщатся посредством пор. Следует уточнить, что у растений пора представляет собой лишь углубление во вторичной оболочке до первичной оболочки и никаких сквозных перфораций между трахеидами не имеется.

Чаще всего встречаются окаймлённые поры (рис.35-1). У них канал, обращённый в полость клетки, образует расширение – камеру поры. Поры большинства хвойных растений на первичной оболочке имеют утолщение – торус, который представляет собой своеобразный клапан и способен регулировать интенсивность транспорта воды. Смещаясь, торус перекрывает ток воды через пору, но после этого вернуться в прежнее положение он уже не может, совершая одноразовое действие.

Поры бывают более или менее округлыми, вытянутыми перпендикулярно вытянутой оси (группа этих пор напоминает лестницу, поэтому такую пористость называют лестничной). Через поры транспорт осуществляется как в продольном, так и в поперечном направлении. Поры присутствуют не только у трахеид, но и отдельных клеток сосудов, которые образуют сосуд.

С точки зрения эволюционной теории трахеиды представляют собой первую и основную структуру, осуществляющую проведение воды в теле высших растений. Считают, что сосуды возникли из трахеид вследствие лизиса поперечных стенок между ними (рис.36). Большинство папоротникообразных и голосеменных сосудов не имеют. Передвижение воды у них происходит посредством трахеид.

В процессе эволюционного развития сосуды возникали у разных групп растений неоднократно, но наиболее важное функциональное значение они приобрели у покрытосеменных, у которых они имеются наряду с трахеидами. Считают, что обладание более совершенным механизмом транспорта помогло им не только выжить, но и достигнуть значительного разнообразия форм.

Ксилема является сложной тканью, кроме водопроводящих элементов в ней содержатся и другие. Механические функции выполняют волокна либриформа (лат. liber – луб, forma – форма). Присутствие дополнительных механических структур важно, так как, несмотря на утолщения, стенки водопроводящих элементов всё же слишком тонки. Они не способны самостоятельно удерживать большую массу многолетнего растения. Волокна развивались из трахеид. Для них характерны меньшие размеры, одревесневшие (лигнифицированные) оболочки и узкие полости. На стенке можно обнаружить, лишенные окаймления поры. Эти волокна проводить воду не могут, основная их функция опорная.

В ксилеме имеются и живые клетки. Их масса может достигать 25% от общего объема древесины. Так как эти клетки имеют округлую форму, то их называют паренхимой древесины. В теле растения паренхима располагается двумя способами. В первом случае клетки располагаются в виде вертикальных тяжей – это тяжевая паренхима. В другом случае паренхима образует горизонтальные лучи. Они называются сердцевинными лучами, так как соединяют сердцевину и кору. Сердцевина выполняет ряд функций, в том числе и запасание веществ.

Флоэма (луб). Это сложная ткань, так как образована разнотипными клетками. Основные клетки проводящие, называются ситовидными элементами (рис.37). Проводящие элементы ксилемы образованы мёртвыми клетками, а у флоэмы они в течение периода функционирования сохраняют живой, хотя и сильно изменённый протопласт. По флоэме происходит отток пластических веществ от фотосинтезирующих органов. Способностью проводить органические вещества обладают все живые клетки растений. А отсюда, если ксилему можно обнаружить только у высших растений, то транспорт органических веществ между клетками осуществляется и у низших растений.

Ксилема и флоэма развиваются из апикальных меристем. На первом этапе в прокамбиальном тяже формируется протофлоэма. По мере роста окружающих тканей она растягивается, и, когда рост завершается, вместо протофлоэмы формируется метафлоэма.

У различных групп высших растений можно встретить два типа ситовидных элементов. У папоротникообразных и голосеменных он представлены ситовидными клетками. Ситовидные поля в клетках рассеяны по боковым стенкам. В протопласте сохраняется несколько деструктированное ядро.

У покрытосеменных ситовидные элементы называются ситовидными трубками. Они сообщаются между собой через ситовидные пластинки. В зрелых клетках ядра отсутствуют. Однако рядом с ситовидной трубкой располагается клетка-спутница, образующаяся вместе с ситовидной трубкой в результате митотического деления общей материнской клетки (рис.38). Клетка-спутница имеет более плотную цитоплазму с большим количеством активных митохондрий, а также полноценно функционирующее ядро, огромное количество плазмодесм (в десять раз больше, чем у других клеток). Клетки-спутницы оказывают воздействие на функциональную активность безъядерных ситовидных клеток трубок.

Структура зрелых ситовидных клеток имеет некоторые особенности. Отсутствует вакуоль, поэтому цитоплазма сильно разжижается. Может отсутствовать (у покрытосеменных растений) или находиться в сморщенном функционально малоактивном состоянии ядро. Рибосомы и комплекс Гольджи также отсутствуют, но хорошо развит эндоплазматический ретикулум, который не только пронизывает цитоплазму, но и переходит в соседние клетки через поры ситовидных полей. Хорошо развитые митохондрии и пластиды встречаются в изобилии.

Между клетками транспорт веществ идет через отверстия, расположенные на клеточных оболочках. Такие отверстия называются порами, но в отличие от пор трахеид, являются сквозными. Предполагают, что они представляют собой сильно расширенные плазмодесмы, на стенках, которых откладывается полисахарид каллоза. Поры располагаются группами, образуя ситовидные поля. У примитивных форм ситовидные поля беспорядочно рассеяны по всей поверхности оболочки, у более совершенных покрытосеменных растений располагаются на примыкающих друг к другу концах соседних клеток, образуя ситовидную пластинку (рис.39). Если на ней находится одно ситовидное поле, её называют простой, если несколько – сложной.

Скорость передвижения растворов по ситовидным элементам составляет до 150см ∕ час. Это в тысячу раз превышает скорость свободной диффузии. Вероятно, имеет место активный транспорт, а многочисленные митохондрии ситовидных элементов и клеток-спутниц поставляют для этого необходимую АТФ.

Срок деятельности ситовидных элементов флоэмы зависит от наличия латеральных меристем. Если они имеются, то ситовидные элементы работают в течение всей жизни растения.

Кроме ситовидных элементов и клеток-спутниц, во флоэме присутствуют лубяные волокна, склереиды и паренхима.

20

Виды корней и типы корневых систем

Корень – один из основных вегетативных органов растения. Он закрепляет растение в почве и активно поглощает из нее воду с минеральными солями. Главная функция корней – почвенное питание.

В течение жизни у растения формируется много корней. Одни из них появляются вследствие ветвления главного корня, другие образуются на побеге. Все вместе они образуют корневую систему растения.

В корневой системе различают главный, боковые и придаточные корни. Главный корень развивается из зародышевого корня. Придаточными называют корни, развивающиеся на стеблевой части

побега. Придаточные корни могут вырастать и на листьях. Боковые корни возникают на корнях всех видов (главном, боковых и придаточных).

Корневая система, у которой главный корень хорошо выражен и занимает стержневое положение, называется стержневой. Такие корневые системы можно видеть у фасоли, гороха, одуванчика, тыквы, подсолнечника, березы, дуба и многих других двудольных растений.

Мочковатая корневая система состоит из одинаковых по размерам ветвящихся придаточных и боковых корней, поэтому имеет вид пучка – мочки (например, у подорожника и лютика). Мочковатые корневые системы характерны для всех однодольных растений и некоторых двудольных. Пшеница, рожь, овес, пырей, лук, тюльпан, гладиолус, осока и многие другие однодольные растения имеют мочковатую корневую систему.

Рассматривая внешний вид корня, можно видеть, что его беловатый, почти прозрачный кончик чуть утолщен и прикрыт защитным колпачком – корневым чехликом. Несколько выше чехлика имеется небольшая гладкая часть корня. Над ней находится участок с многочисленными тонкими выростами, которые выглядят как белый пушок вокруг корня. Это корневые волоски. Выше по корню развиваются боковые корни, на них также имеются корневой чехлик и корневые волоски. Ближе к стеблю корень обычно утолщен и имеет буроватый цвет.

В течение жизни растение постоянно увеличивает размеры своих корней. При этом они углубляются в почву и разрастаются далеко в стороны от стебля. Корни свеклы, например, проникают в почву на глубину более 3 м, у кукурузы – 2–2,5 метра, у люцерны – до 5 метров, у пшеницы – на 2-2,5 м. У огурцов корни разрастаются на 1,5-2 м в

стороны от стебля, у лука – на 60-70 см. У взрослой яблони корни разрастаются в стороны на 10-12 м от ствола, а у осины – даже на 30 м.

Корни обладают неограниченной возможностью роста. Но в природе они редко реализуют такую возможность из-за различных причин: ветвления в почве корней других растений, недостаточности питательных веществ и т. д. В специально созданных условиях растение способно развить огромную массу корней. Например, у четырехмесячного растения озимой ржи, выращенного в теплице, образовалась огромная корневая система. Общая длина всех ее корней составила 623 км, что равно расстоянию от Москвы до Санкт-Петербурга. Причем общая поверхность всех корней этого растения была в 130 раз больше поверхности наземных органов растения. Общий прирост всех корней только за одни сутки достигал 4,8 км, и ежесуточно на них образовывалось более 100 млн корневых

волосков.

Корни растут в течение всей жизни растения.

Рост корня осуществляется путем деления и растяжения клеток, находящихся на верхушке (кончике) корня. Все корни растут верхушечной частью. Обнаружить это можно с помощью следующего опыта. На корешок проростка фасоли или тыквы нанесите черной тушью тонкие черточки-метки на одинаковом расстоянии друг от друга. Уже через день можно увидеть, что на участке, расположенном ближе к верхушке корня, расстояние между метками увеличилось, тогда как у основания корня оно не изменилось.

Если удалить верхушку, то рост корня в длину прекратится, но зато образуется много боковых корней. Эта особенность растений используется человеком при выращивании рассады культурных растений.

Корень удлиняется и продвигается в почве в результате деления и растяжения клеток верхушки корня.

Если рассмотреть корневой чехлик под микроскопом, то можно увидеть, что он образован из нескольких слоев клеток. Он ограждает делящиеся клетки кончика корня от механических воздействий среды. Кроме того, клетки корневого чехлика выделяют слизь, которая действует как смазка, облегчая продвижение растущего

корня в почве.

Корень – основной вегетативный орган растения. Корень растет на протяжении всей жизни растения. Он всегда растет вниз, но способен поворачиваться в направлении нужных ему веществ. Корень растет верхушечной частью, защищенной корневым чехликом. Главный, боковые и придаточные корни вместе создают корневую систему. Имеется два типа корневых систем у растений – стержневая и мочковатая.

21

, Некоторые корни выполняют особые функции, в связи с чем меняется и их строение.

Очень часто молодые корневые окончания образуют симбиоз с гифами почвенных грибов , называемый микоризой (дословно "грибокорень"). Чаще всего микоризой становится коровая часть корня в зоне всасывания. Высшее растение и гриб извлекают из такого симбиоза взаимную пользу. Во многих случаях гифы грибов функционально заменяют корневые волоски ( рис. 70 ). Большая часть многолетних растений имеет микоризу. Предполагается, что микориза является одним из факторов, способствовавших прогрессу цветковых растений.

У эпифитных тропических орхидей и некоторых других растений корни покрыты многослойной эпиблемой , называемой веламеном . Веламен выполняет иногда фотосинтезирующую функцию, а позже может участвовать в поглощении атмосферной влаги, образуя мертвый губчатый гигроскопичный покров корня.

На корнях бобовых и ряда видов других семейств возникают особые образования - клубеньки , в которых поселяются бактерии из рода Rhizobium или реже цианобактерии ( рис. 71 ). Эти микроорганизмы способны фиксировать атмосферный молекулярный азот, переводя его в связанное состояние. Часть азотистых соединений, образовавшихся таким путем, усваивает высшее растение-хозяин. С другой стороны, бактерии используют вещества, находящиеся в корнях высшего растения. Описанный симбиоз крайне важен для сельского хозяйства, так как благодаря ему почва обогащается азотистыми веществами.

Очень широко распространены так называемые втягивающие, или контрактильные, корни, обычные у многих луковичных и корневищных растений. Укорачиваясь у основания, такие корни способны втягивать луковицы или корневища в почву на оптимальную для их сохранения глубину в период летней засухи или зимних морозов.

У растений, живущих на бедных кислородом почвах ( таксодиум, или болотный кипарис , растения затопляемых морских побережий, образующих мангровые заросли), имеются дыхательные корни - пневматофоры . Некоторые тропические деревья развивают от оснований стволов досковидные корни, служащие своего рода подпорками.

Очень широко распространены запасающие корни. Возникновение запасающих корней нередко приводит к резкому видоизменению всей корневой системы. Стержневая корневая система, в которой запасающим стал главный корень, нередко превращается в так называемый "корнеплод" ( морковь , петрушка , сельдерей ). Однако у ряда "корнеплодов" большая их часть образована основанием стебля и разросшимся гипокотилем , а собственно корень представляет собой лишь самую нижнюю часть "корнеплода", несущую боковые корни. "Корнеклубни" возникают при видоизменениях ветвистой и мочковатой корневых систем ( георгина , некоторые виды орхидных ).

22

23

24

25

Стебель представляет собой ось побега, несущая листья и почки. Основные функции стебля - опорная и проводящая. Стебель осуществляет связь между корнями и листьями. Кроме того, в стебле нередко откладываются запасные питательные вещества. Иногда стебель - ассимилирующий орган.

На начальных этапах развития побега складывается первичная анатомическая структура стебля, сохраняющаяся у однодольных в течение всей жизни. У двудольных и голосеменных первичная структура довольно быстро нарушается в результате разного рода вторичных изменений и в итоге формируется так называемое вторичное строение стебля.

В результате деятельности прокамбия и остальной первичной меристемы конуса нарастания образуется первичное строение стебля. В первичном стебле обычно различают первичную кору и стелу (центральный цилиндр). В отличие от корня первичная кора снаружи покрыта эпидермой.

Граница между стелой и корой в стеблях выражена гораздо менее четко, нежели в корнях, так как внутренний пограничный слой первичной коры - эндодерма - не имеет столь характерных признаков, как в корне. В состав первичной коры могут входить хлоренхима (ассимиляционная паренхима), неспециализированная паренхима, выделительные, механические (чаще колленхима), а также некоторые другие ткани.

Совокупность тканей стебля, расположенных внутрь от коры, называется центральным цилиндром (стелой). Он занимает центральную часть стебля внутрь от эндодермы, с которой граничит самый наружный слой центрального цилиндра - перицикл. Под ним располагаются проводящие ткани, которые, в свою очередь, охватывают сердцевину. Вся система проводящих тканей в осевых органах, рассматриваемая как единое целое, является стелой. В состав стелы входят, кроме ксилемы и флоэмы, перицикл, сердцевинные лучи и сердцевина.

Самые ранние элементы первичной ксилемы и первичной флоэмы называют протоксилемой и протофлоэмой.

Сердцевина расположена в центре стебля и состоит преимущественно из паренхимы. Сердцевина многих растений частично разрушается, и тогда стебель становится полым. В стебле сердцевина сообщается с первичной корой при помощи паренхимной ткани, расположенной радиальными рядами и получившей название сердцевинных лучей. Наружная часть сердцевины может несколько отличаться от основной ее массы, напр., меньшими размерами клеток и более толстыми оболочками. Эта морфологически четко выделяющаяся зона называется перимедуллярной зоной.

В стебле большинства однодольных растений первичная кора и сердцевина не выражены, так как проводящие пучки располагаются по всему поперечному сечению стебля.

У голосеменных и большинства двудольных покрытосеменных рост стебля в толщину осуществляет камбий, образующий вторичные ткани. Он возникает в виде цилиндра между первичной ксилемой и первичной флоэмой и остается в относительно том же положении неопределенно долго, откладывая по направлению к центру оси вторичную ксилему (метаксилему), а кнаружи - вторичную флоэму (метафлоэму). Существует несколько способов заложения и деятельности камбия:

• непучковый тип - камбий закладывается в виде непрерывного кольца, откладывая сплошные слои вторичных проводящих тканей (стебель липы - Tilia cordata);

• переходный тип - закладывается как пучковый, так и межпучковый камбий. Межпучковый камбий образуется из паренхимы. Из него дифференцируются новые проводящие пучки, которые расположены между более крупными пучками (подсолнечник - Helianthus annuus);

• пучковый тип :

а) закладывается пучковый и межпучковый камбий. Межпучковый камбий дифференцируется в лучевую паренхиму или механические элементы (стебель кирказона - Aristolochia clematitis);

б) закладывается только пучковый камбий, т. е. камбий находится только внутри пучков. Пучки разделены основной паренхимой, которая даже в наиболее старых участках стебля не одревесневает.

При пучковом строении стебля у двудольных растений пучки расположены в один ряд по окружности, параллельно поверхности стебля (стебель лютика - Ranunculus repens).

Вторичное утолщение происходит также в результате деятельности феллогена (пробкового камбия).

При любом типе вторичных изменений в центральном цилиндре первичная ксилема <оттесняется> к центру и остатки ее располагаются на границе с сердцевиной. Напротив, первичная флоэма оттесняется нарастающей вторичной флоэмой к периферии и в дальнейшем становится малозаметной.

В структуре стебля однолетнего травянистого двудольного растения выделяют видоизмененный центральный цилиндр, включающий ткани, возникшие из перицикла, остатки первичной и вторичную флоэму, камбий, вторичную и остатки первичной ксилемы и сердцевину. Видоизмененный центральный цилиндр окружен первичной корой.

У древесных и кустарниковых двудольных, а также у хвойных вторичные утолщения могут продолжаться многие годы. В итоге в стебле выделяют три основные части: кору, древесину и сердцевину. Граница коры и древесины проходит по камбию. Кора многолетнего стебля древесного растения включает перидерму, остатки первичной коры, группы механических элементов различного происхождения, располагающихся на границе остатков первичной коры и флоэмы, и всю массу флоэмы (вторичную флоэму - луб и остатки первичной). У ряда древесных растений с возрастом на смену перидерме формируется корка ( ретидом ). Луб дифференцирован на мягкий луб, состоящий из проводящих и паренхимных элементов. Совокупность механических элементов вторичной флоэмы получила название твердого луба.

Вторичную ксилему с несколькими кольцами прироста называют древесиной. Она расположена внутрь от камбия и занимает большую часть стебля. Слой древесины, отложенный камбием за один вегетационный период, называется годичным кольцом. Как правило, в годичном кольце выделяют весеннюю и летне-осеннюю древесину.

Сердцевина представлена паренхимными клетками. В радиальном направлении стебель пронизан лубодревесинными (сердцевинными) лучами, первичными и вторичными, осуществляющими связь между всеми зонами стебля.

В стебле голосеменных растений имеются смоляные каналы. Проводящая система в древесине у них представлена только трахеидами с большим числом окаймленных пор. Ситовидные элементы флоэмы представлены ситовидными клетками, не сопровождающимися клетками-спутницами. Либриформ отсутствует.

26

. ВНЕШНЕЕ СТРОЕНИЕ ЛИСТА

Лист — часть побега. Он осуществляет три основные функции — фотосинтез (образование органических веществ), газообмен и испарение воды.

Форма листа. Хотя листья разных растений сильно отличаются по внешнему виду, между ними есть много общего. Большая часть листьев имеет зеленую окраску и состоит из двух частей: листовой пластинки и черешка. Черешок соединяет листовую пластинку со стеблем. Такие листья называют черешковыми. Черешковые листья имеют яблоня, вишня, клен, береза. У листьев таких растений, как алоэ, пшеница, цикорий, лен, черешков нет, они прикрепляются к стеблю основанием листовой пластинки. Их называют сидячими.

При основании черешка иногда развиваются выросты — прилистники [1].

По форме листья бывают округлыми, овальными, сердцевидными, игольчатыми и т. д. По форме края пластинки листья также разнообразны. Например, лист яблони имеет зубчатый край, осины — пильчатый, сирени — цельнокрайний [2].

Листья простые и сложные. Простые листья, состоящие из одной листовой пластинки, характерны для березы, клена, дуба, черемухи и других растений [3].

Сложные листья состоят из нескольких листовых пластинок, соединенных с общим черешком небольшими черешками. Такие листья у ясеня, рябины, малины и многих других [81].

Жилкование [5]. Листовые пластинки в разных направлениях пронизаны проводящими пучками, которые называют жилками.

Жилки не только проводят растворы питательных веществ, но и придают листу прочность. Различные формы края параллельно одна другой, как у многих однодольных растений (пшеницы, ржи, ячменя, лука и некоторых других), такое жилкование называют параллельным.

Более широкие листья ландыша и комнатного растения аспидистры имеют дуговое жилкование, что также характерно для однодольных растений.

Сетчатое жилкование типично для листьев двудольных растений, жилки в них, как правило, многократно ветвятся и образуют сплошную сеть. Но бывают исключения: например, у двудольного подорожника жилкование дуговое, а листья однодольного растения вороний глаз имеют сетчатое жилкование.

1.2 КЛЕТОЧНОЕ СТРОЕНИЕ ЛИСТА

Знакомство с внутренним строением листовой пластинки поможет лучше понять значение зеленых листьев в жизни растений.

Строение кожицы. Сверху и снизу лист покрыт тонкой прозрачной кожицей, ее клетки предохраняют лист от по клетками кожицы повреждений и высыхания. Кожица — один из видов покровной ткани растения.

Среди бесцветных и прозрачных клеток кожицы встречаются расположенные парами замыкающие клетки, в цитоплазме которых содержатся зеленые пластиды — хлоропласты. Между ними находится щель. Эти клетки и щель между ними называют устьицем [3]. Через устьичную щель в лист проникает воздух и происходит испарение воды.

У большинства растений устьица находятся в основном на кожице нижней стороны листовой пластинки. На листьях водных растений, плавающих на поверхности воды, устьица находятся только на верхней стороне листа, а на подводных листьях устьиц нет вообще. Число устьиц огромно. Так, на листе липы их насчитывается более миллиона, а на листе капусты — несколько миллионов устьиц.

Строение мякоти листа. Под кожицей находится мякоть листа, состоящая из клеток основной ткани

27

28

При различении видов важным признаком может служить жилкование, т. е. расположение в листьях сосудисто-волокнистых пучков. Тип жилкования листьев зависит от наличия разных жилок (боковых, главных) и от особенностей их расхождения. Главными жилками называют те, от которых отходят мелкие жилки. В листе может находиться только одна главная жилка, она проходит посередине и называется срединной. Вторичными или боковыми называются жилки, отходящие от главной. Если главной жилки нет или она слабо выражена, но есть продольные жилки, идущие от основания пластинки и сближающиеся у ее верхушки, то такое жилкование будет называться параллельно-нервным. Если продольные нервы образуют пологие дуги, то это будет дугонервное жилкование. Перисто-дугонервным оно будет в том случае, если есть развитая главная жилка, от которой отходят дуговидные боковые жилки.

Углонервным жилкование называется при наличии одной или нескольких главных жилок, от которых отделяются мелкие, а от тех, в свою очередь, образуются еще более мелкие. В углонервном жилковании различают еще несколько видов. Например, перистое, при котором есть только главная жилка, и от нее образуются ветвящиеся боковые. При пальчатом жилковании несколько жилок широким веером отходят от начала пластинки. Веерное жилкование – такое, при котором много жилок отходят от основания листа, пучковое – когда жилки отходят от основания направленным вперед пучком.

Если жилкование углонервное, то возможно два варианта направления жилок. Первый вариант – это когда жилки доходят до края листа и заканчиваются здесь же, но сначала расщепляются надвое. В результате получается совершенно-углонервный лист, совершенно-перистая нервация. Второй вариант – когда боковые жилки, идущие по направлению к краям, не достигают их и соединяются друг с другом изгибами или теряются в многочисленных разветвлениях. К краям пластинки выходят третичные или четвертичные жилки. Такой лист будет называться несовершенно-углонервным с несовершенно-перистой нервацией

Боковые жилки второго и третьего порядка, которые направлены к краю листа, называются краеупорными. Если жилки упираются в верхушки зубцов, то они будут зубцеупорными. Если между жилками имеются выемки – это бухтоупорные жилки. Жилки, которые направлены к краю листа, но не достигают его, называются краебежными; жилки, входящие в зубцы, – зубцебежными, а достигающие выемок между ними – бухтобежными. Если боковые жилки не доходят до края листа и затухают, предварительно повернув к верхушке листовой пластинки, их называют дугобежными. По тому, как смыкаются жилки между собой, можно выделить дугобежно-сомкнутое жилкование. В этом случае боковые нервы, загибаясь к верхушке, образуют пологие дуги. Если соединительные дуги примыкают друг к другу и образуют извилистую или слабоколенчатую жилку, то можно говорить о наличии обводной жилки. Когда жилки загнуты и образуют петлю с другой жилкой, то нервацию можно назвать петляющей или перисто-петлевидной. У большого числа растений есть прикраевые жилки, которые идут вдоль края пластинки и затем замыкают снаружи сеть жилок.

Мелкие жилки с хорошо развитой нервацией связаны тонкими перемычками, которые называются анастомозами. Они способствуют сохранению жизни листа при разрывах. При однодольном типе нервации дуговидные, продольные и параллельные жилки соединяются друг с другом перемычками или идут отдельно друг от друга.

Цвет листьев можно определить, рассматривая их на рассеянный свет. Обычно зеленый цвет обладает различными оттенками. У большого количества растений цвет верхней стороны отличается от цвета нижней, такие растения называют двуцветными. У многих листьев цвет зависит от присутствия стирающегося налета.

Блеск листьев определяется по виду их поверхности при отраженном свете. Его регистрируют, согнув пластинку и освещая ее сбоку. Блестящие листья при этом на месте сгиба дают яркий блик. Среди листьев, которые обладают блеском, различают листья с блеском лаковым, жирным, стеклянистым, шелковистым.

Рассматривая лист, можно определить его просвечиваемость, цвет, оттенок, наличие пятен, полосок, штрихов, точек, крапинок.

Поверхность листьев может быть голой или покрытой различными выростами эпидермиса в виде волосков, ресничек, шипиков, железок. Волоски подразделяются на одноклеточные и многоклеточные, простые и ветвистые. К простым относятся жесткие, прямые, толстостенные и заостренные щетинки. Из ветвистых волосков выделяют двуветвистые, пучковатые и звездчатые (их лучи расположены в виде розетки).

29-31

Цветок – это видоизменённый укороченный, неразветвлённый побег с ограниченным ростом, предназначенный для опыления, полового процесса и образования семян и плодов.

Все внутренние части цветка расположены на цветоложе, т.е. его укороченной и расширенной стеблевой части. В полном цветке имеются все части, нижние его доли образуют околоцветник, часто состоящий из чашечки и венчика, несколько выше располагаются тычинки и выше пестик, или пестики (слева).

Удлинённая часть цветочного побега под цветком называется цветоножкой.

Побег, на котором располагается цветок или соцветие, часто называют цветоносом.

Лист, из пазухи которого выходит цветок, называется кроющим по отношению к этому цветку.

У многих растений на цветоножке есть небольшие листочки - прицветники. Иногда прицветниками называют кроющие листья, а листочки на цветоножках - прицветничками (например, у фиалки).

Симметрия цветка. Существенным признаком цветка является характер симметрии в расположении и форме его органов, особенно венчика. Если через цветок можно провести несколько плоскостей симметрии - цветок называют правильным, или актиноморфным (слева).

Если части одного круга цветка различны и расположены так, что плоскость симметрии только одна, - его называют зигоморфным, или неправильным (справа).

Околоцветник называют простым, когда все его листочки однотипны (слева).

Двойной околоцветник состоит из чашечки и венчика. Чашечка - наружный круг двойного околоцветника, выполняющий преимущественно функцию защиты; составляющие её листочки - чашелистики чаще бывают зелёными (справа), реже окрашенными.

Венчик – внутренняя, наиболее заметная часть двойного околоцветника, служащая для привлечения опылителей. Листочки, образующие венчик, называются лепестками. Венчик бывает раздельнолепестным (слева) и сростнолепестным (или спайнолепестным) (справа).

В лепестке нижняя, более узкая его часть - ноготок - может значительно отличаться от верхней, расширенной – отгиба (слева).

В сростолепестном венчике различают трубку, отгиб и зев - место перехода трубки в отгиб. Количество зубцов, лопастей или долей отгиба обычно указывает на число сросшихся лепестков.

В зависимости от соотношения величин трубки и отгиба, от формы отгиба различают различные формы венчика, например: колесовидный (слева), колокольчатый (у колокольчика), трубчатый, язычковый (справа), двугубый (у яснотки).

Цветорасположение.У некоторых растений в конусе нарастания главного стебля возникает одна цветочная почка. В этом случае цветок называется одиночным (слева).

Если цветочные почки формируются как пазушные, и на растении возникает несколько цветков, различают два случая: когда цветки возникают по одному в пазухах срединных листьев, их называют одиночными пазушными (слева); если цветки находятся в пазухах верхушечных, недоразвитых или иногда ярко окрашенных листьев, при этом часто сближенных, говорят о соцветиях (справа).

Морфология соцветий

В зависимости от типа ветвления, длины и расположения осей соцветия и последовательности заложения цветков различают множество соцветий, например:

Кисть - главная ось имеет неопределённо долгий рост, и на ней закладываются цветки, приблизительно равные по длине цветоножки (слева).

Зонтик - междоузлия главной оси укорочены так, что все цветоножки выходят как бы из одной точки (справа).

Головка - главная ось укорочена и несколько расширена, цветки сидячие или на коротких цветоножках, собраны в компактное соцветие (справа).

Корзинка - главная ось блюдцеобразно расширена и на ней расположены сидячие цветки, раскрывающиеся от краёв к центру; снаружи корзинка окружена придвинутыми к ней верхушечными листьями, образующими так называемую обёртку (справа).

Дихазий – сложное соцветие, в котором ниже конечного цветка на главной оси соцветия возникают две ветви (супротивные или очередные), заканчивающиеся цветками и иногда в свою очередь также ветвящиеся (слева). Дихазий часто называют полузонтиком.

В природе, кроме дихазия встречаются другие типы сложных соцветий, представляющие собой комбинацию из соцветий одного или разных типов. Примерами сложных соцветий, кроме дихазия, могут служить: сложный зонтик (слева), сложный колос, метелка, головка из корзинок

32

. Строение семян двудольных растений

Внешнее строение семени фасоли. Познакомимся со строением семени фасоли. Оно крупное, и все его части можно легко рассмотреть. Извлечем семя из плода, намочим его в воде и рассмотрим. Семя фасоли почковидное, уплощенное, снаружи покрыто толстой семенной кожурой. Окраска кожуры может быть различной - белой, коричневатой или пятнистой ("мраморной"). Семенная кожура предохраняет от высыхания и механических повреждений остальные части семени.

На вогнутой стороне семени фасоли видно небольшое овальное пятнышко - рубец от семяножки, которая соединяла незрелое семя со стенкой плода. Это пятнышко называют рубчиком. Рядом с рубчиком в семенной кожуре находится крохотное отверстие - семявход. При намачивании через семявход внутрь семени легко проникает вода. Если слегка сжать намоченное семя, то из семявхода выступает капелька воды.

Внутреннее строение семени фасоли. Снимем семенную кожуру. С намоченного семени она снимается легко, а сухого удалить ее очень трудно. После удаления кожуры в руках остается зародыш - маленькое растеньице. Его то и защищает семенная кожура. Внимательно рассмотрим зародыш. Хорошо видны два толстых зародышевых листа. Эти зародышевые листья называют семядолями. Семядоли у фасоли крупные, мясистые, именно на их долю приходится большая часть массы зародыша.

С вогнутой стороны семядолей, там, где был семявход, виден небольшой цилиндрический зародышевый стебелек, который постепенно переходит в очень короткий зародышевый корешок. Стебелек и корешок плотно прижаты к щели между семядолями.

Осторожно раздвинем семядоли. Между ними видна почечка зародыша. Удалим одну семядолю и рассмотрим почечку. Она находится на верхушке зародышевого стебелька, который у фасоли изогнут. В почечке хорошо различимы зачаточные листья. Ниже почечки на стебле располагаются семядоли.

Таким образом, зародыш обладает теми же вегетативными органами, что и взрослое растение. У зародыша есть корень и побег. Зародышевый побег состоит из стебелька, двух зародышевых листьев (семядолей) и почечки.

Растения, зародыш которых имеет две семядоли, относят к двудольным. Это - картофель, помидор, морковь, яблоня, дуб, огурцы и многие другие растения.

Строение семени перца. Однако не у всех двудольных растений семена имеют такое же строение, как у фасоли. Познакомимся со строением семени сладкого перца. Оно плоское, круглое, слегка желтоватое. Рубчик в виде вытянутой площадочки расположен на узком ребре семени в его основании. Семенная кожура твердая и прочная, но сравнительно тонкая.

Сквозь кожуру просвечивает контур зародыша, который изогнут и расположен ближе к ребру семени. Центральная часть семени занята особой запасающей тканью, которую называют эндоспермом. На разрезе семени перца, сделанном параллельно его плоской стороне, хорошо видно, что зародыш окружает эндосперм.

Сравним строение семян фасоли и перца и выделим черты их сходства и различия. Сходство проявляется в том, что семена имеют кожуру и зародыш с двумя семядолями. Однако у фасоли эндосперма нет и запасные вещества отложены в семядолях, то есть в листьях зародыша. У перца ендосперм хорошо развит, и именно в нем отложены запасные вещества семени, а семядоли тонкие. У зародыша перца почечка слабо развита и представлена маленьким участком образовательной ткани.

Большинство двудольных растений имеет семена с эндоспермом. Эндосперм хорошо представлен в семенах помидоров, баклажанов, сирени, мака и липы. В семенах льна, яблони эндосперм хотя и имеется, но он невелик, и питательные вещества запасены также в зародышах, преимущественно семядолях. У тыквы, подсолнечника, семенах эндосперм практически отсутствует и запасные вещества отложены в семядолях.

Строение семян однодольных растений

Строение семени лука. Мы рассмотрели строение семян, у которых зародыш имеет две семядоли. А все ли семена цветковых растений имеют такое строение? Для того чтобы ответить на этот вопрос, познакомимся со строением семени лука.

Снаружи семя покрыто толстой семенной кожурой почти черного цвета. На поверхности семени заметны рубчик и семявход, расположенные рядом.

Разрежем семя лука вдоль. Под семенной кожурой расположен плотный стекловидный эндспрем, в котором находится зародыш. Зародыш семени лука крупный, согнут дугообразно. Корешок постепенно переходит в зародышевый стебелек, на котором расположен один тонкий зародышевый лист - семядоля. Семядоля как бы продолжает стебелек. Почечка слабо развита и скрыта под семядолей. Запасные вещества находятся в эндосперме, как и в семенах сладкого перца.

Сравним строение зародышей лука, фасоли и перца. Они имеют одно и те же органы: зародышевый корешок и зародышевый побег, состоящий из зародышевого стебелька, зародышевых листьев (семядолей) и почечки. Однако зародыши фасоли и перца имеют по две сямодоли, расположенные друг против друга по бокам стебелька. У зародыша лука только одна семядоля, которая отходит от стебелька вблизи его верхушки.

Растения, зародыши которых имеют одну семядолю, называют однодольными.

Строение зерновки пшеницы. К однодольным растениям относят широко распространенную хлебную культуру - пшеницу. Кожура семени пшеницы плотно срослась со стенкой плода, называемого зерновкой. Окраска зерновок пшеницы беловатая или красноватая, в верхней части виден хохолок из волосков.

Если сделать продольный разрез зерновки, то мы увидим, что зародыш расположен у основании семени. Основную часть зерновки составляет эндосперм.

На препарате продольного разреза зерновки под микроскопом видны органы зародыша, зародышевый корешок, стебелек и почечка. Семядоля расположена сбоку зародыша на границе эндоспермом и имеет форму щита, только очень маленького, поэтому семядолю и называют щитком.

Зародыш пшеницы, как и других хлебных культур, имеет своеобразное строение и отличается от других однодольных растений боковым положением семядоли и крупной, хорошо сформированной почечкой.

Среди однодольных встречаются растения, например стрелолист, частуха подорожниковая, семена которых не имеют эндосперма. В таких семенах запасные вещества сосредоточены в зародыше.

Вещества семени

Вода в семенах. Семена, используемые для посева, кажутся сухими. Чтобы выяснить, есть ли в них вода, положим на дно пробирки немного сухих семян и нагреем их над огнем. При этом держать пробирку над огнем надо горизонтально, чтобы ее верхняя часть оставалась холодной. Вскоре на внутренних стенках в холодной части пробирки мы заметим капли воды. Откуда появилась вода? Очевидно, это результат охлаждения водяных паров, выделившихся из семян. Следовательно, в сухих семенах содержится вода. Правда, в семенах, в отличие от других частей растения, воды очень мало. Если в листьях и сочных плодах содержится 70-95% воды, то в семенах только 10-15% их массы. Итак, семена состоят главным образом из сухих веществ.

Сухие вещества семени. Попытаемся выяснить состав сухих веществ семени. Для этого будем продолжать нагревать семена в пробирке. Сначала будут выделятся бурые газы, а затем семена обуглятся. При полном сгорании семян от них остается лишь немного золы. В результате этого опыта можно прийти к выводу от том, что семена содержат горючие органические вещества; и негорючие минеральные (золу). Золы в семенах немного - всего от 1,5% до 5% от сухой массы. Остальная часть приходится на долю органических веществ. Итак, в семенах откладываются в основном органические вещества.

Белок семени. Чтобы выяснить состав органических веществ, исследуем пшеничную муку. Вы знаете, что муку получают, размалывая в мельницах зерна пшеницы. Возьмем немного муки, добавим воды и замесим тесто. Попробуем тесто на язык - вкус теста пресный. Это показывает, что в семенах нет сахара, который обычен в сочных плодах и других частях растений.

Завернем комочек теста в марлю и тщательно промоем в сосуде с водой. После промывания вода в сосуде станет мутной, а в марле останется небольшой клейкий комочек - это клейковина. Клейковина представляет собой растительный белок.

Крахмал семени. Исследуем мутную жидкость, оставшуюся в сосуде, где мы промывали тесто. Для этого капнем в жидкость 2-3 капли раствора йода. Жидкость в сосуде посинела, что там есть крахмал. Если подействовать раствором йода на тщательно промытую клейковину, она почти не меняет окраску.

Итак, мы установили, что в семенах содержится растительный белок и крахмал. Оба эти вещества всегда присутствуют в семенах, но у разных растений в разных количествах. Семенах гороха, фасоли, бобов и в особенности сои богаты растительным белком, он составляет третью-четвертую часть их сухой массы. У пшеницы, ржи, кукурузы растительного белка в семенах намного меньше, примерно десятая часть их сухой части. Здесь преобладает крахмал, который составляет более половины их сухой массы.

Жиры семени. Кроме белка и крахмала из органических веществ в семенах есть еще растительные жиры. Это легко доказать. Раздавим на чистой белой бумаге семечко подсолнечника. Тотчас на бумаге появится жирное пятно.

У разных растений в семенах разное количество растительного жира. Семена фасоли, гороха, пшеницы, ржи содержат ничтожное количество жира, у семени льна примерно одна треть сухой массы приходится на жир, у подсолнечника - до половины и более.

33

Условия прорастания семян

Необходимость влаги и воздуха для прорастания семян. Какие условия необходимы, чтобы семена начали прорастать? Для ответа на этот вопрос проведем опыты. Возьмем три стакана и положим на дно каждого по 10 семян гороха. Один стакан оставим сухим, второй заполним водой до краев, а в третий нальем столько, чтобы она смачивала семена, но не покрывала их полностью. Накроем стаканы стеклом. Через 4-5 дней проверим результаты. В первом стакане семена остались без изменений, во втором набухли, но не проросли, в третьем не только набухли, но и проросли.

Результаты показывают, что семена легко впитывают воду и набухают, увеличиваясь в объеме. При набухании клетки семена поглощают воду,. крахмал и белки переходят в растворимую форму. это необходимое условие для роста семени, перехода его из покоящегося состояния к активной жизни. Однако если, как это было во втором стакане, воздух не имеет доступа к семенам, то они хотя и набухают, но не прорастают. Семена проросли только в третьем стакане, где к ним был доступ воды и воздуха. Следовательно, для прорастания семян необходимы влага и воздух.

Потребность в воде и воздухе для прорастания семян у разных растений различная. Засухоустойчивое просо начинает прорастать, если его зерновки поглотили воды вчетверо меньше их собственного веса. Для прорастания пшеницы и ржи необходимо вдвое, а для фасоли и гороха - вчетверо больше воды, чем для проса. Крупные семена огурцов, тыквы, фасоли, требующие для прорастания большого количества влаги, перед посевом лучше замачивать. Зерновки риса - обитателя болот и тимофеевки, живущий в поймах рек, могут прорастать под водой. они довольствуются ничтожным количеством воздуха, который растворен в воде. Зерновки пшеницы, ржи, овса нуждаются в большом количестве воздуха и не прорастают в переувлажненной почве.

Дыхание семян. Для чего при прорастании семенам нужна вода, мы выяснили. А зачем нужен воздух? Необходимость воздуха объясняется тем, что семена дышат, то есть они поглощают кислород и выделяют углекислый газ. Чтобы доказать дыхание семян, возьмем два стеклянных цилиндра. Один наполним на 1/3 набухшими семенами, а другой оставим пустым. Оба цилиндра закроем стеклом. Через сутки возьмем горящую лучинку и внесем ее в пустой. Лучинка продолжает гореть. Опустим ее в цилиндр с семенами. Лучинка гаснет.

Дышат и сухие, и прорастающие семена. Только дыхание сухих семян выражено слабо. При прорастании дыхание резко усиливается, поэтому семенам нужен постоянный приток кислорода. В процессе дыхания семена выделяют не только углекислый газ, но и тепло. По этой причине прорастающие семена нагреваются. Если семена лежат толстым слоем, они могут перегреться. Перегрев приводит к гибели зародышей, а семена с мертвым зародышем нежизнеспособны и не прорастают. Способны прорастать только семена с живым зародышем. Чтобы семена не портились, их хранят в сухих, хорошо проветриваемых помещениях. Все условия, необходимые для сохранности семян, созданы в зернохранилищах (элеваторах).

Необходимость определенной температуры для прорастания семян. Помимо влаги и кислорода на прорастание семян влияют температурные условия. В этом легко убедиться. Возьмем две стеклянные банки. На дно каждой положим по 10-15 семян фасоли и нальем столько воды, чтобы она только смачивала их полностью. Накроем банки стеклом. Одну банку оставим в комнате при температуре 18-19 С, а другую выставим на холод (за окно или в холодильник), где температура не выше 3-4 С. Через 4-5дней, проверив результаты, мы увидим, что семена проросли только в той банке, которая стояла в комнате. Следовательно, для прорастания семян необходима определенная температура.

Семена одних растений при прорастании требуют много тепла, другие мало. Зерновки пшеницы и ржи прорастают при температуре 1-2 С, семена гороха и льна 2-4 С, кукурузы и тыквы 12-14 С. С этими особенностями семян связаны разные сроки посевов. Пшеницу и рожь высеивают ранней весной, вскоре после таяния снега. Огурцы и кукурузу нужно сеять только в конце весны, когда почва хорошо прогреется.

Всхожесть семян. Способность семян к прорастанию называют всхожестью. Всхожесть семян - важный показатель их качества, который необходимо знать, прежде чем засеивать поля и огороды. Определяют всхожесть следующим образом. Отсчитывают 100 семян подряд, без выбора, раскладывают их на мокрой фильтровальной бумаге или на смоченном песке. Через 3-4 дня и через 7-10 дней подсчитывают число проросших семян. Первый учет указывает, насколько дружно прорастают семена, второй - какова их окончательная всхожесть. Всхожесть оценивают в процентах, подсчитывая число проросших семян из 100 посеянных.

34

Вегетативное размножение

При вегетативном способе новое растение образуется из одного из вегетативных органов материнского растения.

Размножение дочерними растениями

Дочернее растение — растение, возникшее из почки на каком-либо органе материнского растения. У ряда видов растений, например папоротник таиландский, на краях листьев появляются придаточные почки, из которых образуются новые (дочерние) растения. После образования листьев и корней их отделяют или они сами отрываются и всплывают к поверхности воды. Дочерние растения укрепляют на субстрате.

У растений из семейства Акантовые, например гигрофила или синема, можно отделить лист или его часть и пустить плавать по поверхности воды. Через некоторое время на краю листа появится придаточная почка и из нее дочернее растение, которое после образования корней и листьев отделяют и сажают в грунт. Некоторые растения с укороченным стеблем развивают цветочную стрелку, на верхушке которой образуется соцветие. У ряда видов эхинодоруса в области соцветия образуется дочернее растение, которое, как правило, растет под водой. После образования корней и 5–7 листьев его отделяют и сажают в грунт. Можно наклонить цветочную стрелку к грунту и прижать камнем, чтобы дочернее растение укоренилось. Некоторые виды апоногетона также образуют в области соцветия дочернее растение, которое отделяют после образования клубня и нескольких листьев.

У луковичных растений, как например кринум таиландский, из пазушных почек луковицы образуются дочерние луковички, которые отчленяются и развиваются в дочерние растения. После образования нескольких листьев растение выкапывают и сажают на новое место.

У ряда корневищных растений, как например акорус, анубиас, кубышка, ряд видов эхинодоруса, из придаточных почек на корневище образуются молодые дочерние растения. После того как такое растение даст несколько листьев, его вместе с куском корневища отделяют острым ножом и сажают в грунт. При пересадке старого растения с длинным корневищем от него можно отрезать кусок корневища и прижать его к грунту. Со временем из спящих почек образуется дочернее растение.

Апоногетоны можно размножать делением корневища или клубня. Для этого клубень или корневище сильно развитого куста делят лезвием острой бритвы на 2–4 части, делая разрезы в вертикальном направлении через точку роста, и в плоскости среза втирают порошок из древесного угля. Эти части сажают на хорошо освещенное место. Переболев, растение дает из почек молодые растения.

Размножение отпрысками (отводками)

Отпрыск — молодое растение, образующееся на ползучем побеге. У одних растений, как например валлиснерия, ползучий побег, образующийся в пазухе листа, состоит из длинного междоузлия с почкой на конце и называется усом. Сначала междоузлие растет в горизонтальном направлении, а затем развитие переходит на почку, которая образует корни и листья молодого растения — отводка. Он в свою очередь образует усы и образование новых отводков следует последовательно один за другим — образуется «цепочка» растений. Отпрыск, образовавший листья и корни, начинает питаться самостоятельно и его можно отделить от материнского растения, но это замедлит образование следующего отпрыска. Если усы не разрезать, то можно получить оптимальное размножение растения. Каждое растение из пазухи листьев образует усы, что приводит к высокой степени вегетативного размножения. Со временем усы, соединяющие растения, отмирают.

У других растений, как например криптокорина, ползучий побег состоит из нескольких междоузлиев и называется плетью. В узле сидит отдельный прикорневой лист и образуются придаточные корни. Плеть некоторое время развивается под грунтом, затем верхушка пробивает поверхность и возникает сжатое междоузлие, о котором можно говорить как о корневище. С его возникновением начинается интенсивное корнеобразование, а прикорневые листья сменяются нормальными — образуется молодое растение — отпрыск, который можно отделить после образования 2–3 листьев. Новые плети образуются, как правило, от участка корневища, но могут и из почек в пазухах прикорневых листьев.

Отпрысками также размножаются многие виды растений, плавающих на поверхности воды, как например водокрас, лимнобиум, пистия и другие.

И. Шеурманн пишет: «Нельзя отделять отпрыски слишком рано. Молодое растение должно вырасти до трети, лучше до половины материнского (у криптокорин почти одинаковой величины). Отпрыск у плавающего растения не отделяют, соединение распадается само».

Размножение черенками

Черенок — часть побега растения с удлиненным стеблем, пригодная для вегетативного размножения. От стебля острым ножом или ногтями отделяют верхушку — головной черенок, который должен состоять не менее чем из 3 узлов, и затем, удалив листья с нижних 2 узлов, сажают в грунт так, чтобы безлистные узлы были им покрыты, потому что они дадут корни. Если у растения образовался боковой побег, то черенок отделяют непосредственно над узлом, от которого отходит боковой побег. Кроме того, можно отделить в качестве черенка и сам боковой побег, если он образовал не менее 3 узлов. Если растение достаточно велико, то от него, кроме головного черенка, можно отделить следующий участок стебля — побеговый черенок не менее чем с 4 узлами и, удалив листья с нижних 2 узлов, посадить в грунт.

Наиболее быстро начинает свой рост головной черенок. Оставшееся в грунте материнское растение, обладающее развитой корневой системой, также вскоре начинает давать в узлах боковые побеги. Последним трогается в рост побеговый черенок.

Черенками размножают и растения, плавающие в толще воды, как например элодея. При этом у нее выкидывают начинающий загнивать последний кусок стебля материнского растения.

Половое размножение

При половом размножении происходит оплодотворение и образование нового растения. У цветковых растений оплодотворение происходит в цветке. Поэтому половое размножение называется также семенным. Перенос пыльцы с пыльников тычинок на рыльца пестиков цветка — опыление. При самоопылении рыльца опыляются пыльцой своего цветка, в результате потомство генетически равноценно родительскому растению. При перекрестном опылении на рыльце попадает пыльца с других растений, в результате потомство более разнообразно по наследственным признакам и более жизнеспособно.

Кроме опыления рыльцев пыльцой растений своего вида, бывает опыление пыльцой близко­родственного вида — гибридизация. Потомство — гибриды — обладают признаками двух видов. Гибриды очень распространены среди апоногетонов, в результате чего настоящие, чистые виды встречаются довольно редко.

У многих видов возможно как перекрестное, так и самоопыление. При этом у некоторых видов растений, как например барклайя длиннолистная, цветки не раскрываются, но дают семена.

В аквариумистике семенное размножение используют, в основном, только для апоногетонов, которые образуют соцветия, и очень редко для барклайи, кубышки, кувшинки и некоторых видов эхинодоруса.

Из-за отсутствия в подавляющем большинстве случаев естественных способов опыления применяют искусственное, при котором пыльцу с тычинок на рыльца переносят мягкой кисточкой, а у самоопыляемых растений можно проводить по тычинкам и пестикам чистым пальцем. Следует учесть, что молодые растения, дающие цветочную стрелку и соцветие, после опыления сильно истощаются и плохо растут, поэтому у них первую стрелку лучше обрезать и дать растению набраться сил

35

Плоды и семена нередко могут оказаться далеко от растений, на которых они созрели. Это объясняется тем, что плоды и семена одних растений имеют приспособления для распространения ветром, других — животными, человеком, водой, а семена некоторых растений, например желтой акации и бешеного огeрца, разбрасывают сами созревшие плоды 10.

Семена тополя, покрытые белыми пушистыми волосками, распространяются ветром на большие расстояния. Ветром разносятся и плоды одуванчика, имеющие парашютики.

Плод клена распадается на две части, каждая из которых имеет крыловидный вырост. Опадая, половинки плодов быстро вертятся в воздухе, что замедляет их падение на землю; ветром они могут быть унесены далеко в сторону от дерева, на котором созрели.

Некоторые степные растения ко времени созревания плодов засыхают; ветер обламывает их у корня, перекатывает по земле с места на место, рассеивая семена. Такие растения получили название «перекати-поле».

Водой распространяются плоды и семена не только водных, но и некоторых наземных растений. Ольха часто растет по берегам рек; ее плоды, попадая в воду, не тонут. Течение уносит их далеко от материнских растений.

Плоды кокосовой пальмы могут переноситься морскими течениями с одного острова на другой.

Семена или плоды многих растений иногда невольно распространяют животные и люди. По канавам, около прудов и рек растет сорняк череда. Ее плоды — семянки с шипами, покрытые загнутыми зубчиками. Пробежит собака по зарослям череды, пройдет какое-либо другое животное или человек — маленькие шиповатые плоды плотно прицепляются к шерсти или одежде, да так, что щеткой не отчистишь, приходится выбирать их руками.

Семена растений с сочными плодами — рябины, бузины, брусники, черники, черемухи, ландыша — распространяют животные, в основном птицы. Они поедают эти плоды и, перемещаясь с места на место, вместе с пометом выбрасывают неповрежденные семена съеденных плодов.

Плоды и семена некоторых растений прилипают или прицепляются к мешкам или тюкам с грузом и попадают в вагоны, в трюмы кораблей, в автомобили и самолеты. При разгрузке семена попадают на землю, прорастают, и выросшие из них растения часто находят на новых территориях хорошие условия для жизни. Так, из Европы в Америку в свое время был завезен подорожник — обычное растение тропинок и дорог. Коренные жители Америки — индейцы — называют подорожник «следом белого человека».

Разбрасывание семян можно наблюдать у многих растений. Например, летом в жаркий, солнечный день около кустов желтой акации можно услышать легкое потрескивание — это растрескиваются и разбрасывают семена созревшие бобы. Разбрасывают свои семена также плоды гороха и фасоли. Поэтому плоды этих растений собирают до их полного высыхания, иначе они выбросят семена и урожай погибнет.

В Крыму и на Кавказе на сухих склонах и морских побережьях можно встретить сорное растение бешеный огурец. После созревания семян в его плодах скапливается слизь, которая вместе с семенами с силой выбрасывается из плодов и прилипает к животному или к человеку, прикоснувшемуся к созревшему плоду.

36

. Плод (fructus), орган покрытосеменных растений, возникающий из цветка и служащий для формирования, защиты и распространения заключённых в нём семян. П. образуется после оплодотворения (за исключением партенокарпических П., см. Партенокарпия). У более примитивных растений, например у лютиковых, П. возникает только из разросшегося и видоизменённого гинецея, прикрепленного к цветоложу, без участия др. органов, составляющих цветок. В процессе эволюции в связи с развитием приспособлений к защите и распространению семян в формировании П. всё большее участие принимали: цветоложе (земляника), гинофор (каперцы, гвоздичные), околоцветник (свёкла, шелковица), чашечка (белена), венчик и тычинки (клевер), гипантий листового происхождения (яблоня), цветковые и колосковые чешуи (злаки), прицветники (лебеда). Наружную часть П. составляет околоплодник (перикарпий). Внутри П., в полостях (гнёздах), на выростах — плацентах — развиваются семена.

Во многих классификациях П. обычно делят на настоящие (формирующиеся из разросшейся завязи) и ложные (в их образовании принимают участие и др. органы). Настоящие П. подразделяют на простые, сформированные из одного пестика, и сложные (сборные), возникшие из многочленного апокарпного гинецея. Простые делят по консистенции околоплодника на сухие и сочные. Среди сухих различают многосемянные — вскрывающиеся (листовка, боб, стручок, мешочек, коробочка, крыночка и др.) и невскрывающиеся: членистые (членистый боб, членистый стручок) и дробные (двукрылатка, вислоплодник и др.) и односемянные невскрывающиеся (орех, орешек, крылатка, семянка, зерновка). Среди сочных П. выделяют многосемянные (ягода, тыквина, яблоко, померанец, гранатина) и односемянные (костянка). Сложные П. называют, исходя из названия простых П., сложной листовкой, сложной семянкой, сложной костянкой и т.д.

В большинстве классификаций плоды обычно разделяют на настоящие (формирующиеся из разросшейся завязи) и ложные (в их

Более современные, морфогенетические классификации П. учитывают совокупность признаков, важных для выяснения эволюции: строение гинецея, характер и степень участия в образовании П. др. органов (кроме гинецея), число, расположение и способы срастания плодолистиков, число и характер прикрепления семян и др. Морфогенетические классификации делят П. на апокарпные (образуются из несросшихся пестиков) и ценокарпные (образуются из сростнолистного гинецея).

Ценокарпные П. подразделяют на синкарпные (дву- или многогнёздные, с центральной краевой плацентацией), паракарпные (одногнёздные, с краевой постепенной плацентацией) и лизикарпные (одногнёздные, с центральной колончатой плацентацией). В зависимости от степени участия в образовании П. различных внепестичных органов П. бывают голые, с покрывалом, с оболочкой, погруженные. По положению завязи различают верхние, нижние и полунижние П.

Апокарпные П. наиболее примитивны. Среди них исходным типом считают голую верхнюю спиральную многолистовку (купальница). Из неё в процессе эволюции в результате уменьшения числа плодолистиков образовались пяти-, трёх-, дву- и однолистовки (борец, живокость), с изменением взаимного расположения плодолистиков — циклическая многолистовка (толстянковые), с образованием сочного околоплодника — сочная многолистовка (лимонник), с уменьшением числа семян до одного — многоорешек (лютик). Сокращение числа плодолистиков у сочной многолистовки привело к образованию сочной однолистовки (воронец) и одноорешка (роголистник). От многолистовки произошёл также типичный боб, отличающийся от неё числом плодолистиков и способом вскрывания не только по брюшному шву, но и по средней жилке. Многокостянка (малина), возможно, произошла из многолистовки путём уменьшения числа семян и изменения консистенции околоплодника, а однокостянка (вишня), по-видимому, таким же образом произошла из пятилистовки. К апокарпным П. часто относят также зерновку (злаки), близкую к П. некоторых пальм.

Синкарпные П. возникли, вероятно, из циклической многолистовки в результате срастания плодолистиков. Из верхней завязи образовалась верхняя синкарпная коробочка — сборный тип П. Из неё в результате изменения способа вскрывания произошли регма (молочай) и стеригма (герань), вследствие недоразвития гнёзд и семезачатков, кроме одного, — карцерула (липа) и при недоразвитии всех семезачатков, кроме двух,— двукрылатка (клён). Путём образования ложной перегородки в гнёздах и 4 односемянных выростов перикарпия (эремов) возник ценобий (бурачниковые, губоцветные); с формированием сочного околоплодника — многочисленные синкарпные ягоды (увы) винограда, ландыша, паслёна и др., синкарпные костянки (крушина и др.), померанец (цитрусовые). Из нижней завязи образовались нижняя синкарпная коробочка (касатиковые), гранатина (гранат), жёлудь (дуб), орех (лещина), яблоко (яблоня), нижняя синкарпная ягода, или бакка (жимолость), нижняя синкарпная костянка (бузина), вислоплодник (зонтичные), двуссмянка (мареновые). Паракарпные П. возникли из синкарпных или непосредственно из апокарпных (например, маковка у мака). К ним относят верхнюю паракарпную коробочку (фиалка), стручок и стручочек (крестоцветные), паракарпую ягоду (каперцы), костянку (пальмы). Часто сюда же причисляют зерновку злаков. К нижним паракарпным П. относят нижнюю паракарпную коробочку (орхидные), семянку (сложноцветные), тыквину (тыквенные) и др. Лизикарпные П. происходят от синкарпных; к ним относят лизикарпную коробочку (гвоздичные, первоцветные), крыночку (очный цвет), костянку (мирзиновые).

Значение П. для растения — защита и распространение семян. До созревания перикарпий защищает их от высыхания, механических повреждений, поедания животными (в этот период в нём нередко накапливаются ядовитые, кислые или вяжущие вещества, которые при созревании П. исчезают). Перикарпий невскрывающихся П. защищает зрелые семена от поедания и преждевременного прорастания. Распространение П., а с ними и семян происходит при помощи ветра, воды, животных и человека. П., разносимые ветром (анемохория), имеют приспособления, способствующие полёту: хохолок (сложноцветные), перистый стилодий (ломонос, дриада), крыловидные выросты (клён, вяз), кроющий лист соцветия (липа) и др. В перикарпии П., разносимых водой (гидрохория), наблюдается развитие воздухоносной ткани и полостей или образование наружных выростов, задерживающих воздух (осоки, многие водные растения). П., снабженные различными цепкими выростами — крючками, щетинками, шипами (липучка, морковь), могут прицепляться к шерсти животных и одежде человека. П. с сочными придатками (перловник, некоторые осоки) разносятся муравьями (мирмекохория). П. с сочным околоплодником распространяются с помощью птиц (орнитохория) или др. животных, поедающих эти П. (зоохория). Человек также участвует в распространении П. как сознательно, так и бессознательно, перенося П. сорных и некоторых др. растений как примесь к посевному материалу, с органическими удобрениями, орудиями обработки почвы, транспортом (антропохория).

Многие П. содержат большое количество важнейших питательных веществ (белков, жиров, углеводов, витаминов) и составляют в свежем, консервированном или переработанном виде существенную часть рациона. Многие П. используются в качестве корма для скота, а также для получения лекарственных средств, красителей и пр. П. сорных растений засоряют почву, ухудшают качество посевного, товарного и фуражного зерна и могут вызывать отравления. Морфологические признаки П. дают возможность определять виды растений. Науку, изучающую П., называют карпологией.

37

38

Одновременно с ростом растений происходит и их развитие. Индивидуальное развитие растений (онтогенез) длится от образования зиготы до смерти растения. Период развития от зиготы до формирования зародыша (эмбриогенез) имеет большое значение для понимания путей эволюции растительного мира и родственных связей между видами и является объектом изучения эмбриологии. Поэтому часто, говоря о развитии растения, подразумевают его развитие начиная от прорастания семени. В процессе своего индивидуального развития (в последнем понимании) растения проходят ряд периодов (этапов):

Латентный период - состояние покоящегося семени.

Период всходов, или проростков, - когда растение питается как веществами, находящимися в семени, так и самостоятельно.

Период молодого растения, или ювенильный, - когда растения полностью обеспечивают себя питательными веществами. Этот период продолжается до цветения.

Период взрослого растения (матурный, или дефинитивный). На этом этапе развития растение способно цвести и плодоносить.

Период старости (сенильный). Растение перестает цвести и плодоносить, чахнет и отмирает.

Переход от одного этапа развития к другому сопровождается физиологическими и биохимическими изменениями в организме. Только после того, как эти изменения совершатся, у растений развивается новый орган. Происходит органогенез. Таким образом, процесс индивидуального развития следует определить как совокупность последовательных физиологических, биохимических и морфологических преобразований, происходящих в растительном организме в продолжении его жизни.

Большой вклад в изучение развития растений внесли советские и зарубежные ученые (Н. А. Максимов, В. И. Разумов, М. Х. Чайлахян, Ф. М. Куперман, П. Клебс, Г. А. Гарнер и др.). Они установили, что весь жизненный цикл растений, его развитие состоит из отдельных разнокачественных этапов - стадий развития. Сейчас точно известно, что на первых этапах развития растению необходимы определенные температуры (яровизация). Только после воздействия определенных для каждого вида (сорта) температур в клетках происходят изменения, приводящие к формированию цветков. Так, у хлопчатника яровизация происходит при +20 ... +25°С, а у озимой пшеницы - при 0 ... +5°С. Однако растение не зацветет, если оно в дальнейшем не подвергнется определенному воздействию света (явление фотопериодизма). Существенное значение имеет установление факта, что именно листу принадлежит решающая роль в восприятии фотопериодических условий. Именно в листе происходит образование веществ, которые влияют на цветение растений. Одни растения зацветают только на коротком, 10-12-часовом дне, другие - только на длинном дне. Было установлено, что все растения можно разделить на две группы: растения короткого дня и растения длинного дня. Для развития семян большое значение имеет качество света. Указанные явления объясняются условиями исторического развития предков данных видов (сортов) растений. Растения различных географических широт приспособились к определенной температуре, продолжительности и периодичности солнечного освещения.

Накопленный материал по изучению формирования и развития органов в различных условиях (различные температура, свет, питание, влажность) позволил ученым разработать метод биологического контроля за ходом развития сельскохозяйственных растений и своевременным влиянием на повышение урожая. Так, если во время формирования цветков и соцветий создать для растений наиболее благоприятные условия питания и освещенности, можно добиться увеличения числа колосков и цветков в соцветиях злаков. Контроль за развитием конуса нарастания позволяет определить жизнеспособность озимых после перезимовки и путем соответственных агротехнических приемов улучшить их состояние и, следовательно, повысить урожай.

Человек может влиять различными способами на ход индивидуального развития растений. Действуя на набухшее семя различными температурами, можно изменять некоторые качества будущего растения. Известно, что путем закаливания семян можно повысить холодостойкость растений. В других случаях, воздействуя на семена очень низкими для данного вида температурами, можно вызвать цветение растений на несколько лет раньше обычных сроков (персик и пионы зацветают на второй год, а не на четвертый).

При вегетативном размножении растений следует учитывать, что органы и части растений не равнозначны в зависимости от их местоположения. Органы и части растения, расположенные ближе к основанию стебля, по возрасту более старые, но по развитию более молодые; верхушечныe органы и части растения по возрасту более молодые, но по развитию являются более старыми. Почки в разных участках стебля также разнокачественны. Поэтому если взять два черенка с одного и того же растения, но один - из верхней его части, а другой - у основания стебля, то скорее зацветет черенок, который был взят в верхней части стебля.

За долгий период существования предки каждого вида подвергались различным внешним воздействиям. В процессе приспособления к ним у растений менялись как внешний облик, так и внутренние процессы в организме. В процессе индивидуального развития растение повторяет основные этапы развития своих предков (филогенез). Это может проявляться наглядно и скрыто. Например, первые листья проростков настурции имеют лопастную форму, а не щитовидную; первые листья некоторых цитрусовых сложные, нередуцированные до одной пластинки; у лиственницы проростки в течение нескольких лет остаются вечнозелеными; у солянок семена лучше прорастают на незасоленных почвах и т. д. Знание особенностей филогенеза помогает в работе по селекции, интродукции и акклиматизации растений.

Индивидуальное развитие растений (жизненный цикл) у каждого вида имеет различную продолжительность. Одни виды заканчивают свой жизненный цикл за один вегетационный период (однолетники), другие образуют семена только на второй год жизни (двулетники), третьи зацветают и начинают плодоносить на 3-5-й год жизни (многолетники).

Если растения цветут и плодоносят всего один раз в жизни, их называют монокарпиками. К этой группе растений следует отнести однолетние растения (пастушья сумка, василек посевной, птичья гречиха, лебеда, лен, овес, пшеница, астры, настурция и др.), двулетние растения (морковь, капуста белокочанная, петрушка, репа, свекла, царский скипетр, мокрица, наперстянка и др.) и некоторые многолетние (агава, бамбук, ферула).

Большинство многолетних растений цветет и плодоносит много раз (поликарпики, или поликарпические растения). Это деревья, кустарники, многолетние травы.

39

Систематика - это наука, изучающая многообразие организмов на Земле, их классификацию и эволюционные взаимоотношения.

Основная ботаническая дисциплина — систематика растений — разделяет многообразие растительного мира на соподчинённые друг другу естественные группы — таксоны (классификация), устанавливает рациональную систему их наименований (номенклатура) и выясняет родственные (эволюционные) взаимоотношения между ними (филогения). В прошлом систематика основывалась на внешних морфологических признаках растений и их географическом распространении, теперь же систематики широко используют также признаки внутреннего строения растений, особенности строения растительных клеток, их хромосомного аппарата, а также химический состав и экологические особенности растений. Установление видового состава растений (флоры) какой-либо определенной территории обычно называется флористикой, выявление областей распространения (ареалов) отдельных видов, родов и семейств — хорологией (фитохорологией). Изучение древесных и кустарниковых растений выделяют в особую дисциплину — дендрологию.

В своем развитии систематика растений прошла три этапа.

I этап. "Искусственная" систематика

Искусственность классификации состояла в том, что она основывалась на небольшом количестве случайно взятых признаков. В результате, в одной группе могли оказаться совершенно не родственные друг другу организмы. Наибольшего расцвета искусственная систематика достигла в середине 18 века (система Карла Линнея).

Карл Линней (Linnaeus) родился (23.05.1707 в г. Росхульд (Швеция) в семье деревенского пастора.

Родители хотели, чтобы Карл стал священнослужителем, но его с юности увлекала естественная история, особенно ботаника. Эти занятия поощрял местный врач, посоветовавший Линнею выбрать профессию медика, поскольку в то время ботаника считалась частью фармакологии.

В 1727 Линней поступил в Лундский университет, перешел в Упсальский университет, где преподавание ботаники и медицины было поставлено лучше. В Упсале работал вместе с Олафом Цельсием, теологом и ботаником-любителем, участвовавшим в подготовке книги «Библейская ботаника» (Hierobotanicum) – списка растений, упоминавшихся в Библии. В 1729 в качестве новогоднего подарка Цельсию Линней написал эссе «Введение к помолвкам растений» (Praeludia sponsalorum plantarun), в котором поэтически описал процесс их размножения. В 1731, защитив диссертацию, Линней стал ассистентом профессора ботаники О. Рудбека. В следующем году совершил путешествие по Лапландии, собирая образцы растений. Упсальское научное общество, субсидировавшее эту работу, опубликовало о ней только краткий отчет – «Флора Лапландии» (Flora Lapponica). Подробная работа Линнея по растениям Лапландии увидела свет лишь в 1737, а живо написанный дневник экспедиции «Лапландский быт » (Lachesis Lapponica) вышел уже после смерти автора в латинском переводе.

В 1733–1734 Линней читал лекции и вёл научную работу в университете, написал ряд книг и статей. Однако продолжение медицинской карьеры по традиции требовало получения учёной степени за границей. В 1735 Линней поступил в Хардервейкский университет в Голландии, где вскоре получил степень доктора медицины. В Голландии сблизился с известным лейденским врачом Г. Бургаве, который порекомендовал Линнея бургомистру Амстердама Георгу Клиффорту, страстному садоводу, собравшему коллекцию экзотических растений. Клиффорт сделал Линнея своим личным врачом и поручил ему определить и классифицировать разводимые им экземпляры. Результатом стал трактат «Клиффортовский сад» (Hortus Cliffortianus), опубликованный в 1737.

В 1736–1738 в Голландии вышли первые издания работ Линнея: в 1736 – «Система природы» (Systema naturae), «Ботаническая библиотека» (Bibliotheca botanica) и «Основы ботаники» (Fundamenta botanica); в 1737 – «Критика ботаники» (Critica botanica), «Роды растений» (Genera plantarum), «Флора Лапландии» (Flora Lapponica) и «Клиффортовский сад» (Hortus Cliffortianus); в 1738 – «Классы растений» (Classes plantarum), «Собрание родóв» (Corollarium generum) и «Половой метод» (Methodus sexualist). В 1738 Линней отредактировал книгу о рыбах «Ихтиология» (Ichthyologia), оставшуюся незаконченной после смерти его друга Петера Артеди. Ботанические работы, особенно «Роды растений», легли в основу современной систематики растений. В них Линней описал и применил новую систему классификации, значительно упрощавшую определение организмов. В методе, который он назвал «половым», основной упор делался на строении и количестве репродуктивных структур растений, то есть тычинок и пестиков.

Еще более смелым трудом стала знаменитая «Система природы», попытка распределить все творения природы – животных, растения и минералы – по классам, отрядам, родам и видам, а также установить правила их идентификации. Исправленные и дополненные издания этого трактата выходили 12 раз в течение жизни Линнея и несколько раз переиздавались после смерти учёного.

В 1738 Линней по поручению Клиффорта посетил ботанические центры Англии. Получил приглашения работать в Голландии и Германии, однако предпочёл вернуться в Швецию и в 1739 открыл медицинскую практику в Стокгольме. В 1741 был назначен профессором медицины Упсальского университета, а в 1742 – профессором ботаники. Последующие годы он в основном преподавал, однако тогда же совершил несколько научных экспедиций в малоизученные области Швеции. Собиратели всего мира присылали ему экземпляры неизвестных форм живого, и он описывал в своих книгах лучшие находки.

В 1745 Линней опубликовал труд «Флора Швеции» (Flora Suecica), в 1746 – «Фауна Швеции» (Fauna Suecica), в 1748 – «Упсальский сад» (Hortus Upsaliensis). В Швеции и за границей продолжали выходить новые издания «Системы природы». Некоторые из них, особенно шестое (1748), десятое (1758) и двенадцатое (1766), содержали дополнительные материалы. Знаменитые 10-е и 12-е издания стали энциклопедическими многотомниками, содержавшими краткие описания всех известных к тому времени видов животных, растений и минералов. Статья о каждом виде дополнялась информацией о его географическом распространении, среде обитания, поведении и разновидностях. Именно в 10-м издании Линней впервые дал двойные (бинарные, или биноминальные) названия всем известным ему видам животных. В 1753 завершил труд «Виды растений» (Species plantarum); в нём содержались описания и бинарные названия всех видов растений, определившие современную ботаническую номенклатуру. В книге «Философия ботаники» (Philosophia botanica), вышедшей в 1751, Линней афористично изложил принципы, которыми он руководствовался при изучении растений.

Скончался Линней 10.1.1778 в г. Упсала (Швеция).