
- •1. Способы задания движения точки.
- •2. Определение скорости точки при задании ее движения векторным способом
- •3. Определение скорости точки при задании ее естественным способом.
- •4. Проекция на касательную к траектории.
- •5. Определение точки при задании ее координатным способом
- •6. Проекции скорости точки на неподвижные оси декартовых координат
- •7. Годограф скорости точки и его уравнения.
- •8. Прямолинейное движение, скорость и ускорение
- •9. Графическое представление закона движения точки.
- •10. Уравнения движения точки в декартовых координатах
- •11. Гармонические колебания.
- •12. Разложение скорости
- •13. Скорость в круговом движении. Угловая скорость
- •14. Закон равномерного, равнопеременного криволинейного движения
- •15. Секторная скорость.
- •16. Выражение скорости в криволинейных координатах.
- •18. Кривизна кривой. Радиус кривизны.
- •19.Проекции скоростей в ортогональной криволинейной системе координат.
- •20. Ускорение точки в криволинейной системе координат.
- •21 Скорость и ускорение точки в цилиндрической системе координат
- •22. Скорость и ускорение в сферической системе координат
- •23. Определение скорости точки в полярной системе координат
- •24. Поступательное движение твердого тела.
- •25. Теорема о перемещении тела, имеющего одну неподвижную точку. Угловая скорость тела.
- •26. Угловая скорость и угловое ускорение
- •27. Аксоиды мгновенных осей
- •28. Вращение вокруг неподвижной оси
- •29)Векторное выражение вращательной скорости и центростремительного ускорения.
- •30)Скорости и ускорения точек вращающегося тела.
- •31)Плоское движение твердого тела. Уравнения плоского движения.
- •32) Разложение плоского движения на поступательное движение вместе с полюсом и вращательное вокруг оси, проходящей через полюс.
- •33)Теорема об ускорении точек плоской фигуры и её следствие
- •34)План скоростей
- •36) Теорема о центре поворота для конечного перемещения плоской фигуры. Теорема Шаля
- •37)Теорема Эйлера-Даламбера:
- •38)Определение скоростей точек плоской фигуры с помощью мцс.
- •39)Мгновенный центр ускорений.
- •40)Векторные и скалярные формулы для скоростей и ускорений точек тела при его вращ.Вокруг неподвижной точки.
- •41) Свободное движение твердого тела. Скорости и ускорения его точек.
- •42) Относительное, переносное и абсолютное движение точки.
- •43) Сложное движение точки. Основные понятия и определения. Примеры.
- •44) Полная и относительная производная от вектора.
- •45. Сложное движение точки. Теорема о сложении скоростей.
- •49) Мгновенный центр ускорений.
- •50) Определение ускорений точек плоской фигуры
- •51) Сложение вращений вокруг двух параллельных осей
- •52) Основная теорема кинематики твердого тела (теорема о проекциях скоростей двух точек твердого тела на прямую, соединяющую эти точки).
- •53)В какой плоскости расположено ускорение точки и чему равны его проекции на естественные координатные оси?
- •54)Что характеризуют собой касательное и нормальное ускорение точки?
- •55)При каком движении точки равно нулю касательное ускорении и при каком нормальное?
- •56)Подвижные и неподвижные центроиды.
- •57. Напишите теорему Штейнера
- •58. Сложение мгновенных, угловых и поступательных скоростей.
- •59. Сложные поступательные движения.
- •60. Винтовое движение.
26. Угловая скорость и угловое ускорение
Движение точки по окружности можно характеризовать углом поворота радиуса, соединяющего движущуюся точку с центром окружности). Изменение этого угла с течением времени характеризуют угловой скоростью. Угловой скоростью точки называют отношение угла поворота радиус-вектора точки к промежутку времени, за который произошел этот поворот. Угловая скорость численно равна углу поворота радиус-вектора точки за единицу времени. Угол поворота обычно измеряют в радианах (рад). Единицей угловой скорости служит радиан в секунду (рад/с) — угловая скорость, при которой точка описывает дугу, опирающуюся на угол, равный одному радиану, за одну секунду. Полный оборот по окружности составляет 2p рад. Значит, если точка вращается с частотой n, то ее угловая скорость есть Если движение точки по окружности неравномерно, то можно ввести понятие средней угловой скорости и мгновенной угловой скорости, как это делалось для обычной скорости в случае неравномерного движения, В дальнейшем, однако, будем рассматривать только равномерное движение по окружности. «Обычную» скорость будем, в отличие от угловой скорости, называть линейной скоростью. Легко найти связь между линейной скоростью точки v, ее угловой скоростью со и радиусом r окружности, по которой она движется. Так как, описав угол, равный одному радиану, точка пройдёт по окружности расстояние, равное радиусу, то т. е. линейная скорость при движении по окружности равна угловой скорости, умноженной на радиус окружности.
27. Аксоиды мгновенных осей
АКСОИДЫ - Геометрическое место мгновенных осей относительно неподвижных осей координат, по отношению к которым рассматривается движение тела, называют неподвижным аксоидом
Неподвижный аксоид является конической поверхностью с вершиной в неподвижной точке тела, так как все мгновенные оси проходят через неподвижную точку.Геометрическое место мгновенных осей в движущемся теле представляет подвижный аксоид, являющийся также конической поверхностью.Для каждого движения твердого тела вокруг неподвижной точки имеется пара аксоидов.При этом, когда тело совершает вращение вокруг неподвижной точки, подвижный аксоид катится по неподвижному без скольжения, так как общая образующая этих аксоидов в каждый момент времени служит мгновенной осью, вокруг которой вращается тело, и, следовательно, все точки этой оси в рассматриваемыii момент времени неподвижны.Если подвижный аксоид катится без скольжения по неподвижному аксоиду, то осуществляется движение тела вокруг неподвижной точки.Если же величины, входящие в формулу (о), рассматривать как функции времени, то она будет представлять собой уравнения подвижного или неподвижного аксоида (в параметрической форме) в зависимости от того, в какой системе координат она составлена.Если х, у, z являются текущими координатами точки мгновенной оси относительно подвижных осей, скрепленных с движущимся телом, а <ах, Ыу, юг — проекции угловой скорости тела на эти оси, то формула (5) является уравнением подвижного аксоида.Если вместо подвижных осей координат взять неподвижные оси, относительно которых рассматривается движение тела, и проекции угловой скорости тоже взять на эти оси, то тогда формула (5) будет уравнением неподвижного аксоида.