
- •1.Опред. Ф-ции неск. Перем. Предел и непрер. Ф-ции.
- •2.Частные произв. И частные дифференциалы ф-ции двух переменных.
- •3. Производные сложных и неявно заданных ф-ций. Примеры.
- •4.Понятие дифференцируемости ф-ции двух переменных. Полный диффер.
- •5.Производная по направлению. Градиент .
- •6. Поверхности уровня. Уравнение касательной плоскости к поверхности.
- •7. Касательная плоскость и нормаль к поверхности
- •8 . Экстремумы функций двух переменных.
- •9. Нахождение наибольшего и наименьшего значений на компакте. Понятие об условном экстремуме.
- •Определённый интеграл как предел интегральных сумм. Геометрически смысл ои.
- •12.Интегралы с переменным верхним пределом.
- •14.Замена переменной в ои.
- •15.Интегрирование по частям в ои.
- •16. Несобственные интегралы по бесконечному промежутку.
- •2) Интегрирование по (-∞;b] — полуоси
- •4) V.P. Интеграл
- •17. Несобственные интегралы от неограниченной функции
- •18. Вычисление площадей плоских фигур в декартовой системе координат. Примеры
- •19. Вычисление площадей плоских фигур в полярной системе координат. Примеры
- •20. Длина дуги кривой. Примеры
- •24. Дифференциальные уравнения первого порядка. Основные понятия. Геометрическая интерпретация. Теорема существования.
- •25. Ду с разделяющимися переменными и однородные.
- •26.Линейные ду и способы их решения.
- •27. Ду второго порядка, допускающие понижение порядка. Примеры
- •28. Ду второго порядка. Общие понятия примеры
- •29. Линейные ду n-го порядка с постоянными коэффициентами.
- •32. Система линейных ду и их решения методом сведения к ду
- •33.Двойной интеграл. Осн. Понятия и определение
- •34. Геометрический и физический смысл двойного интеграла
- •35. Основные свойства двойного интеграла
- •36. Вычисление двойного интеграла в декартовых координатах
- •37. Вычисление двойного интеграла в полярных координатах
- •38. Приложения двойного интеграла.
- •1.Объем тела
- •2.Площадь плоской фигуры
- •4.Статические моменты
- •39.Тройной интеграл. Основные понятия
- •40. Вычисление тройного интеграла в декартовых системах
- •41.Замена переменной в тройном интеграле.
- •4 2.Приложения тройного интеграла
- •43. Криволинейные интегралы первого рода, их свойства и вычисление.
- •44. Криволинейные интегралы второго рода, их свойства и вычисление. Связь между кри 1 и кри2.
- •45. Приложения кри 1-го рода (длина кривой, площадь цилиндрической поверхности, масса кривой, статистические моменты).
- •46. Условия независимости кри-2 от пути интегрирования. Потенциал.
- •47. Приложения кри 2-го рода(площадь плоской фигуры, работа переменной силы).
- •49. Ротором (или вихрем) векторного поля
- •52. Формула Стокса. Если функции р(х; у; z), q(X у; z) и r(X у; z) непрерывны вместе со своими частными производными первого порядка в точках ориентированной поверхности s, то имеет место формула
- •53. Основные понятия теоории рядов. Свойства рядов. Необходимый признак сходимости числового ряда.
- •54. Признаки сходимости рядов с положительными членами.
- •55. Признаки сходимости рядов с положительными членами. Признак Даламбера
- •56. Признаки сходимости рядов с положительными членами. Интегральный признак Коши. Степенной признак сравнения.
- •57. Знакочередующиеся ряды. Признак Лейбница.
- •58.Общий достаточный признак сходимости знакопеременных рядов. Абсолютная и условная сходимости числовых рядов. Свойства абсолютно сходящихся рядов.
- •59. Функциональные ряды. Основные понятия
- •60.Теорема Абеля(о сходимости степенных рядов)
- •62.Ряды Тейлора и Маклорена. Достаточные условия разложимости функции в ряд Тейлора
- •63. Разложение некоторых элементарных функций в ряд Маклорена.
- •64. Применение рядов к приближенным вычислениям значений функции, определенных интегралов.
- •65.Приближенное решение ду.
- •66. Дискретное вероятностное пространство
- •67. Классическое вероятностное пространство
- •68.Теорема сложения, умножения вероятностей. Несовместные, независимые события.
- •69. Формула полной вероятности. Формула Байеса
- •70. Аксиоматическое построение теории вероятностей. Следствия из аксиом.
- •71. Дискретные случайные величины и способы их задания. Биномиальное, геометрическое и распределение Пуассона.
- •72.Непрерывные случайные величины и способы их задания. Равномерное, показательное распределение.
- •73. Функция распределения случайной величины и ее свойства. Определение случайной величины.
- •74. Свойства плотности распределения св. Примеры. Ряд распределения
- •75. Математическое ожидание св и его свойства
- •76. Дисперсия св и ее свойства. Среднеквадратическое отклонение.
- •78 Нормальный закон распределения. Правило «трех сигм».
- •79 Схема Бернулли. Предельные теоремы: Пуассона, локальная и интегральная теоремы Муавра-Лапласа.
- •82.Числовые характеристики двумерной случайной величины:
- •83.Условия независимости случайных величин:
- •84 Коэффициент корреляции св и его свойства.
- •85.Понятие о законе больших чисел. Теорема Бернулли
82.Числовые характеристики двумерной случайной величины:
математическим
ожиданием составляющей
двумерной
дискретной случайной величины
называют
число:
Математическим
ожиданием составляющей
двумерной
дискретной случайной величины
называют
число:
математическим ожиданием составляющей непрерывной двумерной случайной величины называют число:
,
где
В
результате получим:
Математическим
ожиданием составляющей
непрерывной
двумерной случайной величины
называют
число:
дисперсией
составляющей
двумерной
дискретной случайной величины называют
число:
Дисперсией составляющей двумерной дискретной случайной величины называют число:
дисперсией составляющей двумерной непрерывной случайной величины называют число:
дисперсией составляющей двумерной непрерывной случайной величины называют число:
Корни квадратные из дисперсии называют средними квадратичными отклонениями составляющих:
Ковариацию вычисляют по формулам cov(x , h )=M[(x - Mx )(h - Mh )] = M(x h) - Mx Mh .
Если случайные величины x и h независимы, то cov(x ,h )=0.
Ковариационной матрицей случайного вектора (x ,h ) называется матрица вида
безразмерный коэффициент
корреляции
.
Корреляционной матрицей случайного вектора называется матрица
.
83.Условия независимости случайных величин:
Теорема. Для того, чтобы случайные величины Х и Y были независимы, необходимо и достаточно, чтобы функция распределения системы (X, Y) была равна произведению функций распределения составляющих.
Аналогичную
теорему можно сформулировать и для
плотности распределения:
Теорема. Для
того, чтобы случайные величины Х и Y были
независимы, необходимо и достаточно,
чтобы плотность совместного
распределения системы (X, Y)
была равна произведению плотностей
распределения составляющих.
84 Коэффициент корреляции св и его свойства.
Коэффициент корреляции — это мера взаимосвязи измеренных явлений.
Пусть
—
две случайные величины, определённые
на одном вероятностном пространстве.
Тогда их коэффициент корреляции задаётся
формулой:
Свойства:
Коэффициент корреляции равен
тогда и только тогда, когда линейно зависимы:
Если независимые СВ ,то
85.Понятие о законе больших чисел. Теорема Бернулли
Для практики очень важно знание условий, при выполнении которых совокупное действие очень многих случайных причин приводит к результату, почти не зависящему от случая, так как позволяет предвидеть ход явлений. Эти условия и указываются в теоремах, носящих общее название закона больших чисел.
Закон больших чисел - это обобщенное название нескольких теорем, из которых следует, что при неограниченном увеличении числа испытаний средние величины стремятся к некоторым постоянным. К ним относятся теоремы Чебышева и Бернулли. Теорема Чебышева является наиболее общим законом больших чисел, теорема Бернулли - простейшим.
Теорема Бернулли
Если
в каждом из n
независимых испытаний вероятность
появления события A
постоянна, то как угодно близка к единице
вероятность того, что отклонение
относительной частоты от вероятности
по абсолютной величине будет сколь
угодно малым, если число испытаний
достаточно велико. Другими словами,
если
сколь угодно малое положительное число,
то при соблюдении условий теоремы имеет
место равенство
При доказательстве теоремы Бернулли получаем оценку
p