
- •1.Опред. Ф-ции неск. Перем. Предел и непрер. Ф-ции.
- •2.Частные произв. И частные дифференциалы ф-ции двух переменных.
- •3. Производные сложных и неявно заданных ф-ций. Примеры.
- •4.Понятие дифференцируемости ф-ции двух переменных. Полный диффер.
- •5.Производная по направлению. Градиент .
- •6. Поверхности уровня. Уравнение касательной плоскости к поверхности.
- •7. Касательная плоскость и нормаль к поверхности
- •8 . Экстремумы функций двух переменных.
- •9. Нахождение наибольшего и наименьшего значений на компакте. Понятие об условном экстремуме.
- •Определённый интеграл как предел интегральных сумм. Геометрически смысл ои.
- •12.Интегралы с переменным верхним пределом.
- •14.Замена переменной в ои.
- •15.Интегрирование по частям в ои.
- •16. Несобственные интегралы по бесконечному промежутку.
- •2) Интегрирование по (-∞;b] — полуоси
- •4) V.P. Интеграл
- •17. Несобственные интегралы от неограниченной функции
- •18. Вычисление площадей плоских фигур в декартовой системе координат. Примеры
- •19. Вычисление площадей плоских фигур в полярной системе координат. Примеры
- •20. Длина дуги кривой. Примеры
- •24. Дифференциальные уравнения первого порядка. Основные понятия. Геометрическая интерпретация. Теорема существования.
- •25. Ду с разделяющимися переменными и однородные.
- •26.Линейные ду и способы их решения.
- •27. Ду второго порядка, допускающие понижение порядка. Примеры
- •28. Ду второго порядка. Общие понятия примеры
- •29. Линейные ду n-го порядка с постоянными коэффициентами.
- •32. Система линейных ду и их решения методом сведения к ду
- •33.Двойной интеграл. Осн. Понятия и определение
- •34. Геометрический и физический смысл двойного интеграла
- •35. Основные свойства двойного интеграла
- •36. Вычисление двойного интеграла в декартовых координатах
- •37. Вычисление двойного интеграла в полярных координатах
- •38. Приложения двойного интеграла.
- •1.Объем тела
- •2.Площадь плоской фигуры
- •4.Статические моменты
- •39.Тройной интеграл. Основные понятия
- •40. Вычисление тройного интеграла в декартовых системах
- •41.Замена переменной в тройном интеграле.
- •4 2.Приложения тройного интеграла
- •43. Криволинейные интегралы первого рода, их свойства и вычисление.
- •44. Криволинейные интегралы второго рода, их свойства и вычисление. Связь между кри 1 и кри2.
- •45. Приложения кри 1-го рода (длина кривой, площадь цилиндрической поверхности, масса кривой, статистические моменты).
- •46. Условия независимости кри-2 от пути интегрирования. Потенциал.
- •47. Приложения кри 2-го рода(площадь плоской фигуры, работа переменной силы).
- •49. Ротором (или вихрем) векторного поля
- •52. Формула Стокса. Если функции р(х; у; z), q(X у; z) и r(X у; z) непрерывны вместе со своими частными производными первого порядка в точках ориентированной поверхности s, то имеет место формула
- •53. Основные понятия теоории рядов. Свойства рядов. Необходимый признак сходимости числового ряда.
- •54. Признаки сходимости рядов с положительными членами.
- •55. Признаки сходимости рядов с положительными членами. Признак Даламбера
- •56. Признаки сходимости рядов с положительными членами. Интегральный признак Коши. Степенной признак сравнения.
- •57. Знакочередующиеся ряды. Признак Лейбница.
- •58.Общий достаточный признак сходимости знакопеременных рядов. Абсолютная и условная сходимости числовых рядов. Свойства абсолютно сходящихся рядов.
- •59. Функциональные ряды. Основные понятия
- •60.Теорема Абеля(о сходимости степенных рядов)
- •62.Ряды Тейлора и Маклорена. Достаточные условия разложимости функции в ряд Тейлора
- •63. Разложение некоторых элементарных функций в ряд Маклорена.
- •64. Применение рядов к приближенным вычислениям значений функции, определенных интегралов.
- •65.Приближенное решение ду.
- •66. Дискретное вероятностное пространство
- •67. Классическое вероятностное пространство
- •68.Теорема сложения, умножения вероятностей. Несовместные, независимые события.
- •69. Формула полной вероятности. Формула Байеса
- •70. Аксиоматическое построение теории вероятностей. Следствия из аксиом.
- •71. Дискретные случайные величины и способы их задания. Биномиальное, геометрическое и распределение Пуассона.
- •72.Непрерывные случайные величины и способы их задания. Равномерное, показательное распределение.
- •73. Функция распределения случайной величины и ее свойства. Определение случайной величины.
- •74. Свойства плотности распределения св. Примеры. Ряд распределения
- •75. Математическое ожидание св и его свойства
- •76. Дисперсия св и ее свойства. Среднеквадратическое отклонение.
- •78 Нормальный закон распределения. Правило «трех сигм».
- •79 Схема Бернулли. Предельные теоремы: Пуассона, локальная и интегральная теоремы Муавра-Лапласа.
- •82.Числовые характеристики двумерной случайной величины:
- •83.Условия независимости случайных величин:
- •84 Коэффициент корреляции св и его свойства.
- •85.Понятие о законе больших чисел. Теорема Бернулли
57. Знакочередующиеся ряды. Признак Лейбница.
Знакочередующиеся ряды – ряды, члены которых имеют чередующие знаки.
Теорема Лейбница Если члены знакочередующегося ряда убывают по абсолютной величине и стремяться к нулю, когда n,то 1) ряд сходится; 2) любой остаток ряда не превосходит по абсолютной величине первого из своих членов и имеет одинаковый с ним знак.
Теорема:признак
Лейбница: Если
убывая
1)
2)
последовательность an
монотонно убывает, то ряд
сходится при этом
Доказательство.
n=2m,
(S2m)-возраст.
последов.
ограничена,
сходится
Рассмотрим
,
Пусть дан ряд а1-а2+а3-а4+…+(-1)n-1аn+… и известно, что аn>an+1 для всех n и an0 при n.Рассмотрим частичную сумму ряда с чётным числом членов S2n= а1-а2+а3-а4+…+a2n-1-a2n= (а1-а2)+(а3-а4)+…+(a2n-1-a2n). В силу первого условия все разности в скобках положительны, поэтому последовательность частичных сумм {S2n} является возрастающей. Докажем, что она является ограниченной. Для этого представим S2n в виде S2n= а1-[(а2-а3)+(а4-а5)+…+(а2т-1-a2n-1)+a2n]. Выражение в квадратных скобках положительно, поэтому S2n<a1 для любого n, т.е. последовательность {Sn} ограничена. Итак, последовательность {Sn} возрастающая и ограниченная, следовательно, она имеет предел lim S2n=S. Так как S2n+1=S2n+a2n+1, и по условию lim a2n+1=0, то lim S2n+1=limS2n=S n n n Докажем теперь второе утверждение. Рассмотрим остаток ряда а1-а2+а3-а4+…+(-1)n-1аn+… с чётным номером 2k: R2k=a2k+1- a2k+2+… Этот ряд является знакочередующимся и он удовлетворяет всем условиям теоремы, поэтому выполняются оценки 0<R2k<a2k+1. Что касается остатков ряда с нечётными номерами, то любой из них можно записать в виде R2k+1= -a2k+2+a2k+3-…=-(a2k+2-a2k+3+…). Ряд в скобках снова удовлетворяет условиям теоремы, поэтому 0<-R2k+1<a2k+2 или -a2k+2< R2k+1<0. Сходимость ряда вместе с неравенствами 0<S<a1, 0<R2k<a2k+1 и -a2k+2< R2k+1<0 полностью доказывает теорему. Замечание:1)Признак Лейбница явл. достаточным услов.2) теорема остается справедливой в части сходимости если монот. послед. An выполняется с некоторого места.
58.Общий достаточный признак сходимости знакопеременных рядов. Абсолютная и условная сходимости числовых рядов. Свойства абсолютно сходящихся рядов.
Знакочередующийся
ряд является частным случаем
знакопеременного ряда. Числовой ряд
,содержащий
бесконечное множество положительных
и бесконечное множество отрицательных
членов, называется знакопеременным.
Для знакопеременных рядов имеет место следующий общий достаточный признак сходимости.
Пусть дан знакопеременный ряд u1+u2+…+un…Если сходится ряд │u1│+│u2│+…+│un│…,составленный из модулей членов данного ряда, то сходится и сам знакопеременный ряд.
Знакопеременный ряд называется абсолютно сходящимся, если ряд, составленный из модулей его членов, сходится.
Знакопеременный ряд называется условно сходящимся, если сам он сходится, а ряд, составленный из модулей его членов, расходится.
Основные свойства абсолютно сходящихся рядов:
1.Если ряд абсолютно сходится и имеет сумму S, то ряд, полученный из него перестановкой членов, также сходится и имеет ту же сумму S, что и исходный ряд (теорема Дирихле).
2.Абсолютно сходящиеся ряды с суммами S1 и S2 можно почленно складывать (вычитать).В результате получается абсолютно сходящийся ряд, сумма которого равна S1 + S2 (или соответственно S1 - S2 ).
3.Под произведением двух рядов u1+u2+… и v1+v2+…понимают ряд вида (u1v1)+(u1v2+u2v1)+(u1v3+u2v2+u3v1)+…(u1vn+u2vn-1+ …+unv1)+…
Произведение двух абсолютно сходящихся рядов с суммами S1 и S2 есть абсолютно сходящийся ряд, сумма которого равна S1*S2.