
- •1.Опред. Ф-ции неск. Перем. Предел и непрер. Ф-ции.
- •2.Частные произв. И частные дифференциалы ф-ции двух переменных.
- •3. Производные сложных и неявно заданных ф-ций. Примеры.
- •4.Понятие дифференцируемости ф-ции двух переменных. Полный диффер.
- •5.Производная по направлению. Градиент .
- •6. Поверхности уровня. Уравнение касательной плоскости к поверхности.
- •7. Касательная плоскость и нормаль к поверхности
- •8 . Экстремумы функций двух переменных.
- •9. Нахождение наибольшего и наименьшего значений на компакте. Понятие об условном экстремуме.
- •Определённый интеграл как предел интегральных сумм. Геометрически смысл ои.
- •12.Интегралы с переменным верхним пределом.
- •14.Замена переменной в ои.
- •15.Интегрирование по частям в ои.
- •16. Несобственные интегралы по бесконечному промежутку.
- •2) Интегрирование по (-∞;b] — полуоси
- •4) V.P. Интеграл
- •17. Несобственные интегралы от неограниченной функции
- •18. Вычисление площадей плоских фигур в декартовой системе координат. Примеры
- •19. Вычисление площадей плоских фигур в полярной системе координат. Примеры
- •20. Длина дуги кривой. Примеры
- •24. Дифференциальные уравнения первого порядка. Основные понятия. Геометрическая интерпретация. Теорема существования.
- •25. Ду с разделяющимися переменными и однородные.
- •26.Линейные ду и способы их решения.
- •27. Ду второго порядка, допускающие понижение порядка. Примеры
- •28. Ду второго порядка. Общие понятия примеры
- •29. Линейные ду n-го порядка с постоянными коэффициентами.
- •32. Система линейных ду и их решения методом сведения к ду
- •33.Двойной интеграл. Осн. Понятия и определение
- •34. Геометрический и физический смысл двойного интеграла
- •35. Основные свойства двойного интеграла
- •36. Вычисление двойного интеграла в декартовых координатах
- •37. Вычисление двойного интеграла в полярных координатах
- •38. Приложения двойного интеграла.
- •1.Объем тела
- •2.Площадь плоской фигуры
- •4.Статические моменты
- •39.Тройной интеграл. Основные понятия
- •40. Вычисление тройного интеграла в декартовых системах
- •41.Замена переменной в тройном интеграле.
- •4 2.Приложения тройного интеграла
- •43. Криволинейные интегралы первого рода, их свойства и вычисление.
- •44. Криволинейные интегралы второго рода, их свойства и вычисление. Связь между кри 1 и кри2.
- •45. Приложения кри 1-го рода (длина кривой, площадь цилиндрической поверхности, масса кривой, статистические моменты).
- •46. Условия независимости кри-2 от пути интегрирования. Потенциал.
- •47. Приложения кри 2-го рода(площадь плоской фигуры, работа переменной силы).
- •49. Ротором (или вихрем) векторного поля
- •52. Формула Стокса. Если функции р(х; у; z), q(X у; z) и r(X у; z) непрерывны вместе со своими частными производными первого порядка в точках ориентированной поверхности s, то имеет место формула
- •53. Основные понятия теоории рядов. Свойства рядов. Необходимый признак сходимости числового ряда.
- •54. Признаки сходимости рядов с положительными членами.
- •55. Признаки сходимости рядов с положительными членами. Признак Даламбера
- •56. Признаки сходимости рядов с положительными членами. Интегральный признак Коши. Степенной признак сравнения.
- •57. Знакочередующиеся ряды. Признак Лейбница.
- •58.Общий достаточный признак сходимости знакопеременных рядов. Абсолютная и условная сходимости числовых рядов. Свойства абсолютно сходящихся рядов.
- •59. Функциональные ряды. Основные понятия
- •60.Теорема Абеля(о сходимости степенных рядов)
- •62.Ряды Тейлора и Маклорена. Достаточные условия разложимости функции в ряд Тейлора
- •63. Разложение некоторых элементарных функций в ряд Маклорена.
- •64. Применение рядов к приближенным вычислениям значений функции, определенных интегралов.
- •65.Приближенное решение ду.
- •66. Дискретное вероятностное пространство
- •67. Классическое вероятностное пространство
- •68.Теорема сложения, умножения вероятностей. Несовместные, независимые события.
- •69. Формула полной вероятности. Формула Байеса
- •70. Аксиоматическое построение теории вероятностей. Следствия из аксиом.
- •71. Дискретные случайные величины и способы их задания. Биномиальное, геометрическое и распределение Пуассона.
- •72.Непрерывные случайные величины и способы их задания. Равномерное, показательное распределение.
- •73. Функция распределения случайной величины и ее свойства. Определение случайной величины.
- •74. Свойства плотности распределения св. Примеры. Ряд распределения
- •75. Математическое ожидание св и его свойства
- •76. Дисперсия св и ее свойства. Среднеквадратическое отклонение.
- •78 Нормальный закон распределения. Правило «трех сигм».
- •79 Схема Бернулли. Предельные теоремы: Пуассона, локальная и интегральная теоремы Муавра-Лапласа.
- •82.Числовые характеристики двумерной случайной величины:
- •83.Условия независимости случайных величин:
- •84 Коэффициент корреляции св и его свойства.
- •85.Понятие о законе больших чисел. Теорема Бернулли
49. Ротором (или вихрем) векторного поля
= Р(х; y;
z)
+ Q(x; y;
z)
+ R(x; y;
z)
,
называется вектор, обозначаемый rot
(М)
и определяемый формулой
)
Ротором
вектора
в точке М называется вектор, проекция
которого на каждое направление равна
пределу отношения циркуляции вектора
по контуру L плоской площадки S,
перпендикулярной этому направлению, к
площади этой площадки. Физ смысл: С
точностью до числового множителя ротор
поля скоростей
представляет собой угловую скорость
вращения твердого тела.
Дивергенцией (или расходимостью) векторного поля
(М) = Р(х; у; z ) + Q(x; у; z) + R(x; у; z)
в
точке М называется скаляр вида
и обозначается символом div
(М),
т. е .
Физ.
смысл: при div
(M)
> О точка М представляет собой источник,
откуда жидкость вытекает; при div
(M)
< О точка М есть сток, поглощающий
жидкость.
50-51.
Связь между двойным интегралом по
области D и криволинейным интегралом
по границе L этой области устанавливает
формула Остроградского-Грина. Если
функции Р(х; у) и Q(x; у) непрерывны вместе
со своими частными производными
и
в
области D, то имеет место формула
где L - граница области D и интегрирование вдоль кривой L производится в положительном направлении (при движении вдоль кривой, область D остается слева).
52. Формула Стокса. Если функции р(х; у; z), q(X у; z) и r(X у; z) непрерывны вместе со своими частными производными первого порядка в точках ориентированной поверхности s, то имеет место формула
где L - граница поверхности S и интегрирование вдоль кривой L производится в положительном направлении (т. е. при обходе границы L поверхность S должна оставаться все время слева). Формулу Сток можно применять для вычисления криволинейного интеграла по замкнутому контуру с помощью поверхностного интеграла.
53. Основные понятия теоории рядов. Свойства рядов. Необходимый признак сходимости числового ряда.
Числовым рядом наз-ся бесконечная последовательность чисел, соединенная знаком сложения: а1+а2+…+ак +…=∑к=1∞ак.
Где а1,…,ак- члены числового ряда
Введем след. Обозначения: Sк = ∑к=1каi = а1+а2+…+ак - n-ая частичная сумма числового ряда: к=1, то Sк=а1,к=2, то Sк=а1+а2,…к: Sк = а1+а2+…+ак, т.е. видно, что частичная сумма образует числ. Последовательность.
Числ
ряд наз сходящимся,
и его сумма в этом случае будет равна
S,
если сущ-т конечные предел последовательности
частичных сумм, котрый равен S:
Sn=S,
n→∞.
Если предел послед не
или бесконечен, то ряд наз. расходящимся.
Св-ва
сходящихся числ. Рядов.
Рассмотрим
2 числ ряда:
а1+а2+…+ак +…=∑к=1∞ак. (1)
в1+в2+…+вк +…=∑к=1∞вк ( 2)
1)Если ряд (2) сходится, и его сумма равна S, тогда произведение этого ряда на действительное число также сходится, и его сумма будет равна λS.
Док-во: Пусть Sk- частичная сумма ряда (2), sk - частичная сумма ряда λ в1+ λ в2+…+λ вк +…, ясно, что λ Sk = sk. Переходя к пределу, получим:
Lim sk=lim λSk= λlimSk= λS(k→∞)
2)Если ряды (1) и (2) сходятся, и их суммы соответственно равны S, S’, то ряд из определения 1) (назовем его (3)) также сходится, а его сумма будет равна S+S’.
Док-во: Qk=Sk+Tk, где Qk, Sk,Tk – сответственно частич суммы рядо (1), (2), (3). Переходя к пределу при k→∞, получаем, что сущ-т LimQk и Q=S+T
3)Если ряд сходится, то ряд, полученный из данного путем отбрасывания или приписывания конечного числа членов также сходится.
Док-во: Рассмотрим, когда отбрасывают первые n членов. Оставшийся ряд аn+1 +аn+2+… наз остатком исходного ряда (1). Пусть Сn- сумма первых n членов, Sk -частичная сумма исх. Ряда,S’k - частичная сумма остатка, при k>n:
Sk = Cn+S’k
Если сущ-т предел lim Sk k→∞, то сущ-т и предел lim S’k и наоборот. В частности, выполняется равенство: S=S’+Cn
4)Если ряд (1) сходится, то сходится и любой ряд. Полученный из него группировкой слагаемых, причем суммы обоих рядов одинаковы.
НЕОБХОДИМОЕ
УСЛОВИЕ СХОДИМОСТИ РЯДА:
Теорема.
Если ряд а1+а2+…+аn
+…=∑n=1∞аn.
сходится, то предел его общего члена
при n
→∞ равен 0. lim
an=0
Если
ряд
,
,
сх, то
Доказательство
сх =>
,
,
Зам.:
Сформулированный
признак явл. необходимым усл-м и не явл
достаточным, чтобы ряд сходился.
СЛЕДСТВИЕ
:
если
или =
то
расх.
,
,
;
,
; ( Sn)
–неубыв.
Последовательность
Sn
сх