
- •1 Волновые процессы. Продольные и поперечные волны.
- •2.Уравнение бегущей волны, фазовая скорость и волновое уравнение
- •3. Принцип суперпозиции. Групповая скорость.
- •4.Оптика. Основные законы геометрической оптики
- •5.Полное отражение.Световоды.
- •7. Электомагнитные волны. Опыт Герца.
- •8.Дифференциальное уравнение электромагнитных волн.
- •10.Получение и использование эмв. Шкала эмв
- •11.Интерференция света. Условие интерференционного максимума и минимума
- •14. Интерференция света в тонких плёнках (вывод формулы).
- •16 Применение интерференции. Просветление оптики. Измерение чистоты оптики.
- •17.Дифракция Света
- •18. Метод зон Френеля. Зонная пластинка
- •19.Дифракция Френеля на круглом отверстии и диске.
- •22. Дифракция рентгеновских излучений. Формула Вульфа-Брэнггов. Рассеяние.
- •23. Разрешающая способность оптических приборов.
- •25 Поглощение света. Закон Бугера. Коэффициент поглощения.
- •26.Естественный и поляризованный свет.Закон Малюса
- •29. Искусственная оптическая анизотропия. Вращение плоскости поляризации.
- •30. Теплово́е излуче́ние. Спектральные характеристики теплового излучения
- •31 Законы теплового излучения абсолютно черного тела.
- •32. Функция Кирхгофа по Вину и по Рэлею-Джинсу
- •33. Квантовая гипотеза и формула Планка.
- •34.Внешний фотоэффект.Опыты Столетова. Законы фотоэффекта.
- •37 Давление всета. Опыты Лебедева.
- •38. Корпускулярно-волновая двойственность света. Фотоны. Энергия и импульс.
- •40 Волны де Бройля. Опыты Дэвиссона и Джермера.
- •41.Соотношение неопределённостей Гейзенберга
- •45.Тунельный эффект. Прозрачность потенциального барьера
- •46 Опыты Резерфорда. Спектры атома водорода. Сериальные закономерности.
- •47.Постулаты Бора.Опыт Франка и Герца.
- •48.Теория атома водорода по Бору
- •49.Атом водорода в квантовой механике.Квантовые числа.
- •52 Зонная теория твердых тел. Металлы, диэлектрики и полупроводники в зонной теории.
- •53.Собственная электропроводимость полупроводников
- •55 Состав атомного ядра. Ядерные силы. Энергия связи ядра.
- •56.Радиоактивные превращения.Виды радиоактивного излучения
- •58.Альфа-распад и его закономерности.
- •59.Бета-распад и его закономерности.
- •60.Гамма излучение.Механизмы его поглащения веществом.
- •61 Ядерные реакции и их классификации.
- •62.Ядерные реакции деления.Цепная реакция.Ядерный реактор.
- •63 Термоядерная реакция. Проблемы управления термоядерным синтезом
- •64 Общие сведенья об эч
- •65.Классификация эч
58.Альфа-распад и его закономерности.
Радиоакти́вный распа́д (от лат. radius «луч» и āctīvus «действенный») — спонтанное изменение состава нестабильных атомных ядер (заряда Z, массового числа A) путём испускания элементарных частиц или ядерных фрагментов. Процесс радиоактивного распада также называют
радиоакти́вностью, а соответствующие элементы радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.
Альфа-распад - распад атомных ядер, сопровождающийся испусканием альфа-частиц (ядер 4He).Альфа-распад - процесс излучения атомами тяжёлых химических элементов альфа-частиц, с одновременным образованием атомов более лёгких химических элементов.Часть изотопов могут самопроизвольно испускать альфа-частицы (испытывать альфа-распад), т.е. являются альфа-радиоактивными. Альфа-радиоактивность за редким исключением (например 8Be) не встречается среди легких и средних ядер. Подавляющее большинство альфа-радиоактивных изотопов (более 200) расположены в периодической системе в в области тяжелых ядер (Z > 83). Известно также около 20 альфа-радиоактивных изотопов среди редкоземельных элементов, кроме того, альфа-радиоактивность характерна для ядер, находящихся вблизи границы протонной стабильности. Это обусловлено тем, что альфа-распад связан с кулоновским отталкиванием, которое возрастает по мере увеличения размеров ядер быстрее (как Z2 ), чем ядерные силы притяжения, которые растут линейно с ростом массового числа A.Ядро альфа-радиоактивно, если выполнено условие, являющееся следствием закона сохранения энергииM(A,Z) >M(A-4,Z-2) + Ma, M(A,Z) >M(A-4,Z-2) + Ma, (1)
где M(A,Z) и M(A-4,Z-2) - массы покоя исходного и конечного ядер соответственно, Ma - масса альфа-частицы. При этом в результате распада конечное ядро и альфа-частица приобретают суммарную кинетическую энергию
Qa = ( M(A,Z) - M(A-4,Z-2) - Ma ) с2, (2)которая называется энергией альфа-распада. Ядра могут испытывать альфа-распад также на возбужденные состояния конечных ядер и из возбужденных состояний начальных ядер. Поэтому соотношение для энергии альфа-распада (2) можно обобщить следующим образомQa = ( M(A,Z) - M(A-4,Z-2) - Ma ) с2 + - ,
Qa = ( M(A,Z) - M(A-4,Z-2) - Ma ) с2 + - , (3)
где и - энергии возбуждения начального и конечного ядер соответственно. Альфа-частицы, возникающие в результате распада возбужденных состояний, получили название длиннопробежных. Для большинства ядер с A > 190 и для многих ядер с 150 < A < 190 условие (12) выполняется, однако далеко не все они считаются альфа-радиоактивными. Дело в том, что современные экспериментальные возможности не позволяют обнаружить альфа-радиоактивность для нуклидов с периодом полураспада большим, чем 1016 лет. Кроме того, часть “потенциально” альфа-радиоактивных ядер испытывают также бета-распад, который сильно конкурирует с альфа-распадом.Основную часть энергии альфа-распада (около 98%) уносят альфа-частицы. Используя законы сохранения энергии и импульса для кинетической энергии альфа-частицы Ta можно получить соотношение
(4)
Периоды полураспада известных альфа-радиоактивных нуклидов варьируются от 0.298 мкс для 212Po до >1015 лет для 144Nd, 174Hf... Энергия альфа-частиц, испускаемых тяжелыми ядрами из основных состояний, составляет 4 - 9 МэВ, ядрами редкоземельных элементов 2 - 4.5 МэВ.Важным свойством альфа-распада является то, что при небольшом изменении энергии альфа-частиц периоды полураспада меняются на многие порядки. Так у 232Th Qa = 4.08 МэВ, T1/2 = 1.41·1010 лет, а у 218Th Qa = 9.85 МэВ, T1/2 = 10 мкс. Изменению энергии в 2 раза соответствует изменение в периоде полураспада на 24 порядка. Для четно-четных изотопов одного элемента зависимость периода полураспада от энергии альфа-распада хорошо описывается эмпирическим законом Гейгера - Неттолаlg T1/2 = A + B/(Qa)1/2,
lg T1/2 = A + B/(Qa)1/2, (5)
где A и B - константы слабо зависящие от Z. С учетом заряда дочернего ядра Z связь между периодом полураспада T1/2 и энергией альфа-распада Qa может быть представлено в виде (B.A. Brown, Phys. Rev. c46, 811 (1992))lg T1/2 = 9.54Z0.6/(Qa)1/2 - 51.37,
lg T1/2 = 9.54Z0.6/(Qa)1/2 - 51.37, (6)
где T1/2 в сек, Qa в МэВ. На рис. 1 показаны экспериментальные значения периодов полураспада для 119 альфа -радиоактивных четно-четных ядер (Z от 74 до 106) и их описание с помощью соотношения (6).