
- •1 Волновые процессы. Продольные и поперечные волны.
- •2.Уравнение бегущей волны, фазовая скорость и волновое уравнение
- •3. Принцип суперпозиции. Групповая скорость.
- •4.Оптика. Основные законы геометрической оптики
- •5.Полное отражение.Световоды.
- •7. Электомагнитные волны. Опыт Герца.
- •8.Дифференциальное уравнение электромагнитных волн.
- •10.Получение и использование эмв. Шкала эмв
- •11.Интерференция света. Условие интерференционного максимума и минимума
- •14. Интерференция света в тонких плёнках (вывод формулы).
- •16 Применение интерференции. Просветление оптики. Измерение чистоты оптики.
- •17.Дифракция Света
- •18. Метод зон Френеля. Зонная пластинка
- •19.Дифракция Френеля на круглом отверстии и диске.
- •22. Дифракция рентгеновских излучений. Формула Вульфа-Брэнггов. Рассеяние.
- •23. Разрешающая способность оптических приборов.
- •25 Поглощение света. Закон Бугера. Коэффициент поглощения.
- •26.Естественный и поляризованный свет.Закон Малюса
- •29. Искусственная оптическая анизотропия. Вращение плоскости поляризации.
- •30. Теплово́е излуче́ние. Спектральные характеристики теплового излучения
- •31 Законы теплового излучения абсолютно черного тела.
- •32. Функция Кирхгофа по Вину и по Рэлею-Джинсу
- •33. Квантовая гипотеза и формула Планка.
- •34.Внешний фотоэффект.Опыты Столетова. Законы фотоэффекта.
- •37 Давление всета. Опыты Лебедева.
- •38. Корпускулярно-волновая двойственность света. Фотоны. Энергия и импульс.
- •40 Волны де Бройля. Опыты Дэвиссона и Джермера.
- •41.Соотношение неопределённостей Гейзенберга
- •45.Тунельный эффект. Прозрачность потенциального барьера
- •46 Опыты Резерфорда. Спектры атома водорода. Сериальные закономерности.
- •47.Постулаты Бора.Опыт Франка и Герца.
- •48.Теория атома водорода по Бору
- •49.Атом водорода в квантовой механике.Квантовые числа.
- •52 Зонная теория твердых тел. Металлы, диэлектрики и полупроводники в зонной теории.
- •53.Собственная электропроводимость полупроводников
- •55 Состав атомного ядра. Ядерные силы. Энергия связи ядра.
- •56.Радиоактивные превращения.Виды радиоактивного излучения
- •58.Альфа-распад и его закономерности.
- •59.Бета-распад и его закономерности.
- •60.Гамма излучение.Механизмы его поглащения веществом.
- •61 Ядерные реакции и их классификации.
- •62.Ядерные реакции деления.Цепная реакция.Ядерный реактор.
- •63 Термоядерная реакция. Проблемы управления термоядерным синтезом
- •64 Общие сведенья об эч
- •65.Классификация эч
47.Постулаты Бора.Опыт Франка и Герца.
Первый шаг на пути разрешения противоречий между теорией и результатами эксперимента в физике атома был сделан датским физиком Нильсом Бором (1885-1962). Свои представления об особых свойствах атомов Бор сформулировал в виде постулатов следующего содержания:
Атомная система может находиться только в особых стационарных или квантовых состояниях, каждому из которых соответствует определенная энергия En. В стационарном состояние атом не излучает.
При переходе атома из одного стационарного состояния в другое испускается или поглощается квант электромагнитного излучения. Энергия фотона равна разности энергий атома в двух стационарных состояниях.
hv = E m - E n, где h — постоянная Планка.
Все стационарные состояния, кроме одного, являются стационарными лишь условно. Бесконечно долго каждый атом может находиться лишь в стационарном состоянии с минимальным запасом энергии. Это состояние атома называется основным. Все остальные стационарные состояния атома называются возбужденными.
В результате соударения с другим атомом, с заряженной частицей или при поглощении фотона атом может перейти из стационарного состояния с меньшим запасом энергии в стационарное состояние с большим запасом энергии. Из любого возбужденного состояния атом самопроизвольно может переходить в основное состояние; этот переход сопровождается излучением фотонов. Время жизни атомов в возбужденных состояниях обычно не превышает 10-8 — 10-7с.
Основное изменение, внесенное в физику атома постулатами Бора, заключалось в отказе от представлений о непрерывности изменения всех физических величин и в принятии идеи квантования физических величин, которыми описывается внутреннее состояние атома. Вместо непрерывного изменения расстояний между ядром и электроном в атоме оказывается возможным только дискретный ряд значений таких расстояний. Дискретными оказываются возможные значения кинетической и потенциальной энергии электрона в атоме, скорости его движения по круговой орбите.
48.Теория атома водорода по Бору
Постулаты, выдвинутые Бором, позволили рассчитать спектр атома водорода и водородоподобных систем - систем, состоящих из ядра с зарядом Ze и одного электрона (например, ионы Не+, Li2+), а также теоретически вычислить постоянную Ридберга.
Следуя
Бору, рассмотрим движение электрона в
водородоподобной системе, ограничиваясь
круговыми стационарными орбитами.
Решая совместно уравнение
mev2/r = Ze2/(4pe0r2), предложенное
Резерфордом, и уравнение
,
получим выражение для радиуса n-й
стационарной орбиты:
где n = 1, 2, 3, ... . Из выражения следует, что радиусы орбит растут пропорционально квадратам целых чисел.
Для атома водорода (Z = 1) радиус первой орбиты электрона при n = 1, называемый первым воровским радиусом (а), равен
что соответствует расчетам на основании кинетической теории газов. Так как радиусы стационарных орбит измерить невозможно, то для проверки теории необходимо обратиться к таким величинам, которые могут быть измерены экспериментально. Такой величиной является энергия, излучаемая и поглощаемая атомами водорода.
Полная энергия электрона в водородоподобной системе складывается из его кинетической энергии (mev2/2) и потенциальной энергии в электростатическом поле ядра (-Ze2/(4pe0r):
Учитывая квантованные для радиуса n-й стационарной орбиты значения ,получим, что энергия электрона может принимать только следующие дозволенные дискретные значения:
где знак минус означает, что электрон находится в связанном состоянии.
Придавая n различные целочисленные значения, получим для атома водорода (Z= 1), согласно формуле возможные уровни энергии, схематически представленные на рисунке. Энергия атома водорода с увеличением n возрастает и энергетические уровни сближаются к границе, соответствующей значению n =¥. Атом водорода обладает, таким образом, минимальной энергией (E1 = -13,55 эВ) при n =1. максимальной (E¥ = 0) при n = ¥. Следовательно, значение E¥ = 0 соответствует ионизации атома (отрыву от него электрона). Согласно второму постулату Бора ,при переходе атома водорода (Z= 1) из стационарного состояния n в стационарное состояние m с меньшей энергией испускается квант
откуда частота излучения