
- •1. Предмет и значение физики. Формы движения, изучаемые физикой. Механическое движение. Механика, ее составные части. Пространство и время в классической механике.
- •3. Линейные кинематические характеристики движения материальной точки
- •4. Основная задача кинематики
- •5. Свободное тело. Инерциальные системы. Первый закон Ньютона и его физическое содержание.
- •6. Сила. Масса. Импульс. Второй закон Ньютона и его физическое содержание. Принцип независимости взаимодействий. Третий закон Ньютона.
- •7. Замкнутая система. Закон сохранения импульса и его практическое применение. Замкнутая система – механическая система тел, на которую не действуют внешние силы.
- •9. Гравитационная сила. Закон всемирного тяготения. Гравитационное поле. Сила тяжести.
- •10. Вес тела. Реакция опоры. Сила упругости. Закон Гука. Силы трения.
- •11. Неинерциальные системы отсчета. Силы инерции.
- •12. Понятие энергии. Механическая энергия. Работа. Консервативные и неконсервативные силы.
- •14. Потенциальная энергия. Связь потенциальной энергии с силой. Графическое представление потенциальной энергии.
- •15. Закон изменения и сохранения механической энергии. Консервативные и диссипативные системы.
- •16. Применении законов сохранения энергии и импульса к абсолютно упругому и абсолютно неупругому ударам.
- •17. Твердое тело как система частиц. Понятие абсолютно твердого тела. Поступательное и вращательное движения абсолютно твердого тела. Центр инерции (масс) и его движение.
- •18. Основные кинематические характеристики вращательного движения и их связь с линейными кинематическими характеристиками.
- •19. Момент силы. Момент инерции. Теорема Штейнера. Момент импульса. Основной закон динамики вращательного движения.
- •20. Закон сохранения импульса системы тел. Работа сил при вращательном движении.
- •21. Кинетическая энергия тела, вращающегося на неподвижной оси. Полная кинетическая энергия твердого тела.
- •22. Преобразование координат Галилея. Правило сложения скоростей в классической механике. Механический принцип относительности.
- •2.1 Электрические заряды. Элементарный электрический заряд. Закон сохранения заряда.
- •2.2 Закон Кулона. Взаимодействие зарядов. Диэлектрическая проницаемость среды.
- •2.3 Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •2.4 Напряженность поля точечного заряда. Электрическое поле диполя. Графическое представление электрических полей.
- •2.6 Работа сил электростатического поля. Циркуляция вектора напряженности электрического поля.
- •2.7 Потенциал электростатического поля. Разность потенциалов. Эквипотенциальные поверхности.
- •2.8 Связь между потенциалом и напряженностью электростатического поля. Эквипотенциальные поверхности.
- •2.10 Диэлектрики. Полярные и неполярные молекулы. Дипольные моменты молекул диэлектриков.
- •2.11 Поляризация диэлектриков. Свободные и связанные заряды.
- •2.12 Вектор поляризации. Диэлектрическая восприимчивость вещества.
- •2.13 Напряженность поля в диэлектриках. Вектор электрической индукции. Теорема Гаусса для поля в диэлектрике.
- •2.14 Классификация диэлектриков.
- •1.17 Связь между зарядом и потенциалом уединенного проводника. Электроемкость проводников. Конденсаторы.
- •2.18 Последовательное и параллельное соединение конденсаторов.
- •2.19 Энергия системы неподвижных точечных зарядов. Энергия заряженного проводника и конденсатора. Энергия электрического поля. Объемная плотность энергии.
- •3.3. Закон ома для однородного участка цепи в интегральной и дифференциальной форме.
- •3.4.Сопротивление. Зависимость сопрот металлов от температуры. Сверхпроводимость. Последоват и паралельн соединение.
- •3.6. Работа и мощность электротока. З-н джоуля-ленца.
- •4.1 Магнитное поле. Индукция магнитного поля. Силовые линии магнитного поля и их свойства.
- •4.2 Закон Био-Савара-Лапласа.
- •4.3 Применение закона Био-Савара-Лапласа к расчету магнитных полей: проводника конечной длины с током, кругового контура с током.
- •4.4 Циркуляция вектора индукции магнитного поля стационарных токов.
- •4.5 Применение теоремы о циркуляции вектора…
- •4.6 Действие магнитного поля на проводник с током. Сила Ампера.
- •4.7 Контур с током в магнитном поле. Магнитный момент контура с током.
- •4.8 Поток вектора индукции магнитного поля. Теорема Гаусса для магнитного поля.
- •4.9 Работа магнитного поля по перемещению проводника с контуров и контура с током.
- •4.11 Эффект Холла.
- •4.12 Магнитогидродинамический эффект. Мгд – генераторы.
- •4.13 Масспектрометры. Укорители заряженных частиц.
- •4.14 Магнетики. Намагничивание вещества. Гипотеза Ампера.
- •4.15 Намагниченность.
- •4.16 Напряженность магнитного опля.
- •4.17 Диамагнетики.
- •4.18 Парамагнетики.
- •4.19 Ферромагнетики.
- •4.20 Явление электромагнитной индукции. Закон Фарадея-Ленца и правило.
- •4.21 Явление электромагнитной индукции, как следствие закона сохранения энергии.
- •4.23 Токи Фуко.
- •4.25 Индуктивноссть. Явление самоиндукции.
- •4.26 Энергия магнитного поля.
- •5.12 Анализ изопроцессов в идеальном газе с использованием пнт.
- •5.18 Применение внт к анализу работы тепловых машин. Цикл Карно идеальной Тепловой машины. Кпд теплов машины. Обращённый цикл Карно.
- •5.19. Уравнение состояния реального газа. Теоретические и экспериментальные изотермы реального газа. Критическое состояние. Эффект Джоуля-Томпсона.
- •5.19 Уравнение состояния реального газа
14. Потенциальная энергия. Связь потенциальной энергии с силой. Графическое представление потенциальной энергии.
Потенциальная
энергия – механическая энергия системы
тел, определяемая их взаимным расположением
и характером сил взаимодействия между
ними. Потенциальная энергия обусловлена
упругими силами. Конкретный вид функции
W
зависит от характера силового поля:
- потенциальная энергия тела массой m
ны высоте h;
- потенциальная энергия упруго
деформированного тела.
Особенности потенциальной энергии:
;
(С – постоянная интегрирования).
Потенциальная энергия определяется с
точностью до некоторой произвольной
постоянной. Это, однако, не отражается
на физических законах, так как в них
входит разность двух потенциальных
энергий, или производная W
в координатах. Поэтому потенциальную
энергию ткла в каком-то определенном
положении считают равной нулю, а энергию
тела в других положениях отчитывают
относительно нулевого уровня.
Для
консервативных сил
,
,
,
или в векторном виде
.
(grad
W=
-
градиент скаляра W
(
- единичные векторы координатных осей))
15. Закон изменения и сохранения механической энергии. Консервативные и диссипативные системы.
Закон
сохранения механической энергии – в
системе тел, между которыми действуют
только консервативные силы, полная
механическая энергия сохраняется, т.
е. не изменяется со временем.
Закон сохранения энергии – следствие однородности времени. Однородность времени проявляется в том, что физические законы инвариантны относительно выбора начала отсчета времени. Например, при свободном падении тела в поле сил тяжести его скорость и пройденный путь зависят лишь от начальной скорости и продолжительности свободного падения тела и не зависят от того, когда тело начало падать.
Консервативные системы – механические системы, на тела которых действуют только консервативные силы (внутренние и внешние).
Еще одна формулировка закона сохранения энергии – в консервативных системах полная механическая энергия сохраняется, т. е. не изменяется с течением времени. Полная механическая энергия сохраняется, могут лишь происходить превращения кинетической энергии в потенциальную и обратно в эквивалентных количествах так, что полная энергия остается неизменной.
Диссипативная система – система, в которой механическая энергия постепенно уменьшается за счет преобразования в другие (немеханические) формы энергии. Этот процесс получил название диссипации энергии.
Закон сохранения и превращения энергии – энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой.
16. Применении законов сохранения энергии и импульса к абсолютно упругому и абсолютно неупругому ударам.
Удар – столкновение двух или более тел, при котором взаимодействие длится очень короткое время. Система тел в процессе соударения – замкнутая система, так как силы взаимодействия между сталкивающимися телами столь велики, что внешними силами, действующими на тела можно пренебречь.
Коэффициент
восстановления – отношение нормальных
составляющих относительной скорости
тел после (
)
и до (
)
удара.
.
ε=0 – такие тела – абсолютно неупругие,
ε=1 – такие тела – абсолютно упругие.
Законы сохранения импульса и механической энергии (абсолютно упругий удар):
Абсолютно неупругий удар – столкновение двух тел, в результате которого тела объединяются, двигаясь далее как единое целое.
О законе сохранения механической энергии.
В процессе абсолютно неупругого удара тел между ними действуют силы, зависящие не от самих деформаций, а от их скоростей, поэтому эти силы подобны силам трения и закон сохранения механической энергии не соблюдается. Вследствие деформации происходит «потеря» кинетической энергии, перешедшей в другие формы энергии.