
- •1. Предмет и значение физики. Формы движения, изучаемые физикой. Механическое движение. Механика, ее составные части. Пространство и время в классической механике.
- •3. Линейные кинематические характеристики движения материальной точки
- •4. Основная задача кинематики
- •5. Свободное тело. Инерциальные системы. Первый закон Ньютона и его физическое содержание.
- •6. Сила. Масса. Импульс. Второй закон Ньютона и его физическое содержание. Принцип независимости взаимодействий. Третий закон Ньютона.
- •7. Замкнутая система. Закон сохранения импульса и его практическое применение. Замкнутая система – механическая система тел, на которую не действуют внешние силы.
- •9. Гравитационная сила. Закон всемирного тяготения. Гравитационное поле. Сила тяжести.
- •10. Вес тела. Реакция опоры. Сила упругости. Закон Гука. Силы трения.
- •11. Неинерциальные системы отсчета. Силы инерции.
- •12. Понятие энергии. Механическая энергия. Работа. Консервативные и неконсервативные силы.
- •14. Потенциальная энергия. Связь потенциальной энергии с силой. Графическое представление потенциальной энергии.
- •15. Закон изменения и сохранения механической энергии. Консервативные и диссипативные системы.
- •16. Применении законов сохранения энергии и импульса к абсолютно упругому и абсолютно неупругому ударам.
- •17. Твердое тело как система частиц. Понятие абсолютно твердого тела. Поступательное и вращательное движения абсолютно твердого тела. Центр инерции (масс) и его движение.
- •18. Основные кинематические характеристики вращательного движения и их связь с линейными кинематическими характеристиками.
- •19. Момент силы. Момент инерции. Теорема Штейнера. Момент импульса. Основной закон динамики вращательного движения.
- •20. Закон сохранения импульса системы тел. Работа сил при вращательном движении.
- •21. Кинетическая энергия тела, вращающегося на неподвижной оси. Полная кинетическая энергия твердого тела.
- •22. Преобразование координат Галилея. Правило сложения скоростей в классической механике. Механический принцип относительности.
- •2.1 Электрические заряды. Элементарный электрический заряд. Закон сохранения заряда.
- •2.2 Закон Кулона. Взаимодействие зарядов. Диэлектрическая проницаемость среды.
- •2.3 Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •2.4 Напряженность поля точечного заряда. Электрическое поле диполя. Графическое представление электрических полей.
- •2.6 Работа сил электростатического поля. Циркуляция вектора напряженности электрического поля.
- •2.7 Потенциал электростатического поля. Разность потенциалов. Эквипотенциальные поверхности.
- •2.8 Связь между потенциалом и напряженностью электростатического поля. Эквипотенциальные поверхности.
- •2.10 Диэлектрики. Полярные и неполярные молекулы. Дипольные моменты молекул диэлектриков.
- •2.11 Поляризация диэлектриков. Свободные и связанные заряды.
- •2.12 Вектор поляризации. Диэлектрическая восприимчивость вещества.
- •2.13 Напряженность поля в диэлектриках. Вектор электрической индукции. Теорема Гаусса для поля в диэлектрике.
- •2.14 Классификация диэлектриков.
- •1.17 Связь между зарядом и потенциалом уединенного проводника. Электроемкость проводников. Конденсаторы.
- •2.18 Последовательное и параллельное соединение конденсаторов.
- •2.19 Энергия системы неподвижных точечных зарядов. Энергия заряженного проводника и конденсатора. Энергия электрического поля. Объемная плотность энергии.
- •3.3. Закон ома для однородного участка цепи в интегральной и дифференциальной форме.
- •3.4.Сопротивление. Зависимость сопрот металлов от температуры. Сверхпроводимость. Последоват и паралельн соединение.
- •3.6. Работа и мощность электротока. З-н джоуля-ленца.
- •4.1 Магнитное поле. Индукция магнитного поля. Силовые линии магнитного поля и их свойства.
- •4.2 Закон Био-Савара-Лапласа.
- •4.3 Применение закона Био-Савара-Лапласа к расчету магнитных полей: проводника конечной длины с током, кругового контура с током.
- •4.4 Циркуляция вектора индукции магнитного поля стационарных токов.
- •4.5 Применение теоремы о циркуляции вектора…
- •4.6 Действие магнитного поля на проводник с током. Сила Ампера.
- •4.7 Контур с током в магнитном поле. Магнитный момент контура с током.
- •4.8 Поток вектора индукции магнитного поля. Теорема Гаусса для магнитного поля.
- •4.9 Работа магнитного поля по перемещению проводника с контуров и контура с током.
- •4.11 Эффект Холла.
- •4.12 Магнитогидродинамический эффект. Мгд – генераторы.
- •4.13 Масспектрометры. Укорители заряженных частиц.
- •4.14 Магнетики. Намагничивание вещества. Гипотеза Ампера.
- •4.15 Намагниченность.
- •4.16 Напряженность магнитного опля.
- •4.17 Диамагнетики.
- •4.18 Парамагнетики.
- •4.19 Ферромагнетики.
- •4.20 Явление электромагнитной индукции. Закон Фарадея-Ленца и правило.
- •4.21 Явление электромагнитной индукции, как следствие закона сохранения энергии.
- •4.23 Токи Фуко.
- •4.25 Индуктивноссть. Явление самоиндукции.
- •4.26 Энергия магнитного поля.
- •5.12 Анализ изопроцессов в идеальном газе с использованием пнт.
- •5.18 Применение внт к анализу работы тепловых машин. Цикл Карно идеальной Тепловой машины. Кпд теплов машины. Обращённый цикл Карно.
- •5.19. Уравнение состояния реального газа. Теоретические и экспериментальные изотермы реального газа. Критическое состояние. Эффект Джоуля-Томпсона.
- •5.19 Уравнение состояния реального газа
4.15 Намагниченность.
НАМАГНИЧЕННОСТЬ, характеристика магнитного состояния макроскопического тела; в случае однородно намагниченного тела намагниченность определяется как магнитный момент единицы объема. Намагниченность зависит от внешнего магнитного поля. График этой зависимости называется кривой намагничивания. Намагниченность зависит также от формы тела и его ориентации относительно внешнего поля. В изотропных магнетиках намагниченность совпадает с направлением магнитного поля. Некоторые материалы, в том числе горные породы, а также ферро- и ферримагнетики, обладают свойством сохранять так называемую остаточную намагниченность при снятии внешнего магнитного поля.
вещества или среды (обычно обозначается ?) , характеризует связь между намагниченностью вещества М и напряженностью магнитного поля Н в этом веществе: ? = М/Н. Часто пользуются также дифференцированной магнитной восприимчивостью ? = dM/dH.
Магнитная проницаемость - физическая величина, показывающая во сколько раз вектор магнитной индукции в однородной среде отличается от вектора магнитной индукции в той же точке пространства в вакууме. В зависимости от значения магнитной проницаемости вещества подразделяются на парамагнетики, диамагнетики и ферромагнетики.
4.16 Напряженность магнитного опля.
НАПРЯЖЁННОСТЬ МАГНИТНОГО ПОЛЯ (H), векторная характеристика магнитного поля, не зависящая от магнитных свойств среды. В вакууме H совпадает (в ед. СГС) с магнитной индукцией В. В среде H определяет тот вклад в магнитную индукцию, который дают внешние (по отношению к среде) источники поля. В СИ измеряется в А/м, в СГС - в эрстедах; 1 А/м=4p?10-3Э.
Циркуляция напряженности магнитного поля вдоль произвольного контура равна результирующему макротоку сквозь поверхность, натянутую на этот контур.
4.17 Диамагнетики.
Диамагнетиками называются вещества, которые намагничиваются во внешнем магнитном поле в направлении, противоположном направлению вектора магнитной индукции поля.
К диамагнетикам относятся вещества, магнитные моменты атомов, молекул или ионов которых в отсутствие внешнего магнитного поля равны нулю. Диамагнетиками являются инертные газы, молекулярный водород и азот, цинк, медь, золото, висмут, парафин и многие другие органические и неорганические соединения.
В случае отсутствия магнитного поля диамагнетик немагнитен, поскольку в данном случае магнитные моменты электронов взаимно компенсируются, и суммарный магнитный момент атома равен нулю.
Т.к. диамагнитный эффект обусловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойственен всем веществам.
Следует отметить, что магнитная проницаемость у диамагнетиков µ<1. Вот, например, у золота µ=0,999961, у меди µ=0,9999897 и т.д.
Диамагнетизм
Диамагнетизм - возникновение в диамагнетике намагниченности, направленной навстречу внешнему магнитному полю.
Диамагнетизм:
- обусловлен индуцированием дополнительного магнитного момента в атомных электронных оболочках под действием внешнего поля;
- проявляется в случае, когда атомы, молекулы или ионы не имеют результирующего собственного магнитного момента.