Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Главные вопросы.doc
Скачиваний:
105
Добавлен:
23.09.2019
Размер:
848.38 Кб
Скачать

7. Степенной ряд

Важным случаем функциональных рядов являются степенные ряды:

(13)

или

Для выяснения свойств степенных рядов достаточно ограничиться рассмотрением рядов вида (13), так как ряд по степеням легко свести к виду (13) заменой переменных , т.е. переносом начала координат в точку

8. Правила сходимости степенного ряда

Для степенных рядов есть несколько теорем, описывающих условия и характер их сходимости.

  • Первая теорема Абеля: Пусть ряд сходится в точке . Тогда этот ряд сходится абсолютно в круге и равномерно по на любом компактном подмножестве этого круга.

Обращая эту теорему, получаем, что если степенной ряд расходится при , он расходится при всех , таких что . Из первой теоремы Абеля также следует, что существует такой радиус круга (возможно, нулевой или бесконечный), что при ряд сходится абсолютно (и равномерно по на компактных подмножествах круга ), а при  — расходится. Это значение называется радиусом сходимости ряда, а круг  — кругом сходимости.

  • Формула Коши-Адамара: Значение радиуса сходимости степенного ряда может быть вычислено по формуле:

Пусть и  — два степенных ряда с радиусами сходимости и . Тогда

Если у ряда свободный член нулевой, тогда

Вопрос о сходимости ряда в точках границы круга сходимости достаточно сложен и общего ответа здесь нет. Вот некоторые из теорем о сходимости ряда в граничных точках круга сходимости:

  • Признак Д’Аламбера: Если при и выполнено неравенство

тогда степенной ряд сходится во всех точках окружности абсолютно и равномерно по .

  • Признак Дирихле: Если все коэффициенты степенного ряда положительны и последовательность монотонно сходится к нулю, тогда этот ряд сходится во всех точках окружности , кроме, быть может, точки .

  • Вторая теорема Абеля: Пусть степенной ряд сходится в точке . Тогда он сходится равномерно по на отрезке, соединяющем точки 0 и .

Сумма степенного ряда как функция комплексного параметра является предметом изучения теории аналитических функций.

9. Ряд Тейлора

Ряд Те́йлора — разложение функции в бесконечную сумму степенных функций.

Ряд назван в честь английского математика Брука Тейлора, хотя ряд Тейлора был известен задолго до публикаций Тейлора — его использовали ещё в XVII веке Грегори, а также Ньютон.

Ряды Тейлора применяются при аппроксимации функции многочленами. В частности, линеаризация уравнений происходит путём разложения в ряд Тейлора и отсечения всех членов выше первого порядка.

Определение

Пусть функция бесконечно дифференцируема в некоторой окрестности точки . Формальный ряд

называется рядом Тейлора функции в точке .

Связанные определения

  • В случае, если , этот ряд также называется рядом Макло́рена.

Свойства

  • Если есть аналитическая функция в любой точке a, то её ряд Тейлора в любой точке области определения сходится к в некоторой окрестности .

  • Существуют бесконечно дифференцируемые функции, ряд Тейлора которых сходится, но при этом отличается от функции в любой окрестности . Например, Коши предложил такой пример:

У этой функции все производные в нуле равны нулю, поэтому коэффициенты ряда Тейлора в точке равны нулю.

Формула Тейлора

Формула Тейлора используется при доказательстве большого числа теорем в дифференциальном исчислении. Говоря нестрого, формула Тейлора показывает поведение функции в окрестности некоторой точки.

Теорема:

  • Пусть функция имеет производную в некоторой окрестности точки ,

  • Пусть

  • Пусть  — произвольное положительное число,

тогда: точка при или при :

Это формула Тейлора с остаточным членом в общей форме (форма Шлёмильха — Роша).