Сила трения Виды
При наличии относительного движения двух контактирующих тел силы трения, возникающие при их взаимодействии, можно подразделить на:
Трение скольжения — сила, возникающая при поступательном перемещении одного из контактирующих/взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения.
Трение качения — момент сил, возникающий при качении одного из двух контактирующих/взаимодействующих тел относительно другого.
Трение покоя — сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга. Возникает при микроперемещениях (например, при деформации) контактирующих тел. Она действует в направлении, противоположном направлению возможного относительного движения.
В физике взаимодействия трение принято разделять на:
сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазками (в том числе и твердыми смазочными материалами) — очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения — наличие значительной силы трения покоя;
граничное, когда в области контакта могут содержаться слои и участки различной природы (окисные плёнки, жидкость и так далее) — наиболее распространённый случай при трении скольжения.
смешанное, когда область контакта содержит участки сухого и жидкостного трения;
жидкостное (вязкое), при взаимодействии тел, разделённых слоем твёрдого тела (порошком графита), жидкости или газа (смазки) различной толщины — как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость, величина вязкого трения характеризуется вязкостью среды;
эластогидродинамическое, когда решающее значение имеет внутреннее трение в смазывающем материале. Возникает при увеличении относительных скоростей перемещения.
В связи со сложностью физико-химических процессов, протекающих в зоне фрикционного взаимодействия, процессы трения принципиально не поддаются описанию с помощью методов классической механики.
Законы Дальтона — два физических закона, определяющих суммарное давление и растворимость смеси газов. Сформулированы Джоном Дальтоном в начале XIX века.
|
Формулировка законов Закон о суммарном давлении смеси газов
Давление смеси химически не взаимодействующих идеальных газов равно сумме парциальных давлений.
[Править]Закон о растворимости компонентов газовой смеси
При постоянной температуре растворимость в данной жидкости каждого из компонентов газовой смеси, находящейся над жидкостью, пропорциональна их парциальному давлению.
Билет 10
Си́ла упру́гости — сила, возникающая при деформации тела и противодействующая этой деформации.
В случае упругих деформаций является потенциальной. Сила упругости имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. В простейшем случае растяжения/сжатия тела сила упругости направлена противоположно смещению частиц тела, перпендикулярно поверхности.
Вектор силы противоположен направлению деформации тела (смещению его молекул).
Закон Гука
Основная статья: Закон Гука
В простейшем случае одномерных малых упругих деформаций формула для силы упругости имеет вид:
,
где
—
жёсткость тела,
—
величина деформации .
В словесной формулировке закон Гука звучит следующим образом:
Сила упругости, возникающая при деформации тела, прямо пропорциональна удлинению тела и направлена противоположно направлению перемещения частиц тела относительно других частиц при деформации.
Теорема о равнораспределении кинетической энергии по степеням свободы, закон равнораспределения,теорема о равнораспределении — связывает температуру системы с её средней энергией в классическойстатистической механике. В первоначальном виде теорема утверждала, что при тепловом равновесии энергия разделена одинаково между её различными формами, например, средняя кинетическая энергия поступательного движения молекулы должна равняться средней кинетической энергии её вращательного движения.
С помощью теоремы о равнораспределении можно делать количественные предсказания. Как и вириальная теорема, она даёт полные средние кинетические и потенциальные энергии для системы при данной температуре, из которых можно вычислить теплоёмкость системы. Однако теорема о равнораспределении также позволяет определить средние значения отдельных компонентов энергии, такие как кинетическая энергия одной частицы или потенциальная энергия отдельной пружины. В теореме утверждается, что каждая молекула в идеальном газе обладает средней кинетической энергией равной (3/2)kBT при термодинамическом равновесии, где kB — постоянная Больцмана, T — температура. В общем случае её можно применять к любой классической системе, находящейся в состоянии теплового равновесия, независимо от того, насколько она сложна. Теорема о равнораспределении может использоваться для выводауравнения состояния идеального газа и закона Дюлонга — Пти, для определения удельной теплоёмкости твёрдых тел. Её также используют в предсказании свойств звёзд, даже таких как белые карлики и нейтронные звезды, поскольку закон равнораспределения остаётся верен даже когда следует учитывать релятивистские эффекты.
Хотя теорема о равнораспределении делает очень точные предсказания при определённых условиях, она теряет применимость, когда квантовые эффекты начинают играть существенную роль. Равнораспределение действительно только тогда, когда тепловая энергия kBT намного больше, чем интервал между соседними квантовыми уровнями энергии, потому что в противном случае средние значения энергии и теплоёмкости, приходящиеся на определённыестепени свободы, меньше, чем величины, полученные с использованием теоремы о равнораспределении. Говорят, что степень свободы выморожена, если тепловая энергия намного меньше, чем этот интервал. Например, теплоёмкость твёрдого тела уменьшается при низких температурах, поскольку различные типы движения становятся вымороженными, вместо того, чтобы остаться постоянными, как получается по теореме о равнораспределении. Такое уменьшение теплоёмкости было первым знаком физикам 19-ого столетия, что классическая физика теряет применимость при низкой температуре и новые законы должны быть сформулированы для объяснения этих различий. Наряду с другим противоречием, несостоятельностью закона равнораспределения для описанияэлектромагнитного излучения — также известного как ультрафиолетовая катастрофа — привели Макса Планка к идее, что свет излучается и поглощается квантами. Эта революционная гипотеза предвосхитила появление квантовой механики и квантовой теории поля.
