Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика.Билеты.docx
Скачиваний:
7
Добавлен:
23.09.2019
Размер:
110.02 Кб
Скачать

Билет 2 Закон всемирного тяготения Ньютона В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения. Этот закон был открыт Ньютоном в 1666 г.. Он гласит, что сила гравитационного притяжения между двумя материальными точками массы и , разделёнными расстоянием , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними — то есть: Здесь — гравитационная постоянная, равная м3/(кг с2). F=G((m1*m2)/R^2)  F=G*((m1*m2)/R^2)  1-я космическая скорость

Первая космическая скорость (круговая скорость) — скорость, которую необходимо придать объекту, который после этого не будет использовать реактивное движение, чтобы вывести его на круговую орбиту (пренебрегая сопротивлением атмосферы и вращением планеты). Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.  V=7,9 км/с  Билет 3

Равноускоренное движение

Равноускоренное движение — движение, при котором ненулевой вектор ускорения остаётся неизменным по модулю и направлению. Примером такого движения является движение тела, брошенного под углом к горизонту в однородном поле силы тяжести — тело движется с постоянным ускорением , направленным вертикально вниз. При равноускоренном движении по прямой скорость тела определяется формулой: V(t)=Vo+at X(t)=Xo+Vot+(at^2)/2 Движение в поле тяжести

Рассмотрим движение свободного тела в присутствии гравитационного поля Земли на примере выстрела из пушки. Если пушка расположена в точке с координатами (0, 0, 0), то снаряд будет двигаться по траектории, которая описывается следующими уравнениями: X = (vcosj)t Y = (vsinj)t - gt2/2, где v - скорость снаряда вдоль ствола пушки, j - угол между стволом пушки и горизонтом (ось X), t - время, g - ускорение свободного падения в поле тяжести Земли. Подставляя t из первого уравнения во второе, находим уравнение траектории движения снаряда: Y = X tgj - (g/2v2)(1 + tg2j) X2 Из приведённого выше уравнения видно можно видеть, что траектория полёта снаряда имеет параболическую форму. Из этого уравнения находим максимальную дальность стрельбы Xmax (при этом Y=0) и максимальную высоту полёта Ymax (первая производная Y по координате X равна нулю): Xmax = v2sin(2j)/g Ymax = v2sin2j/2g Из первого уравнения видно, что максимальная дальность полёта снаряда достигается при стрельбе под углом j, равном 45°. На видео-анимации показаны траектории полёта снаряда при стрельбе под углами 30, 45 и 70 градусов. Теплоёмкость газа при изопроцессах Изотермический: Теплоемкость идеального газа - это отношение тепла, сообщенного газу, к изменению температуры δТ, которое при этом произошло. Поскольку изменения температуры при изотермическом процессе нет, то теплоёмкость стремиться к бесконечности. Изобарический: Для изобарического процесса в идеальном газе справедлив закон Гей-Люссака: при постоянном давлении объем данной массы газа прямо пропорционален его термодинамической температуре: V1/T1=V2/T1; V/T-const; Изохорический:Изохорический процесс в идеальном газе описывается законом Шарля: при постоянном объеме давление данной массы газа прямо пропорционально его термодинамической температуре: P1/T1=P2/T2; P/T-const;

Билет 4

Криволинейные движения – движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек.

Криволинейное движение – это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции vxи vy ее скорости на осиOx и Oy и координаты x и  y точки в любой момент времени t определяется по формулам

   

   

Центростремительное ускорение — компонента ускорения точки, характеризующая изменение направления вектора скорости для траектории с кривизной. (Вторая компонента, тангенциальное ускорение, характеризует изменением модуля скорости.) Направлено к центру кривизны траектории, чем и обусловлен термин. По величине равно квадрату скорости, поделенному на радиус кривизны. Термин «центростремительное ускорение» в целом эквивалентен термину «нормальное ускорение»; различия лишь стилистические (иногда исторические).

Наиболее простым примером центростремительного ускорения является вектор ускорения при равномерном движении по окружности (направленный к центру окружности).

В классической механике центростремительное ускорение вызывается компонентами сил, направленными ортогонально вектору скорости (и следовательно — перпендикулярно касательной к траектории в данной точке). Например, кривизна орбит космических объектов характеризуется центростремительным ускорением, вызванным гравитацией.

Связанное понятие для неинерциальных систем отсчёта — центробежная сила.

или

Давле́ние   — физическая величина, равная силе F, действующей на единицу площади поверхности S перпендикулярно этой поверхности. В данной точке давление определяется как отношение нормальной составляющей силы  , действующей на малый элемент поверхности, к его площади:

Среднее давление по всей поверхности есть отношение силы к площади поверхности:

Давление характеризует состояние сплошной среды и является диагональной компонентой тензора напряжений. В простейшем случае изотропной равновесной неподвижной среды давление не зависит от ориентации. Давление можно считать также мерой запасённой в сплошной среде потенциальной энергии на единицу объёма и измерять в единицах энергии, отнесённых к единице объёма.

Давление является интенсивной физической величиной. Давление в системе СИ измеряется в паскалях

Закон Паскаля формулируется так:

Давление, производимое на покоящуюся жидкость или газ, передается в любую точку жидкости или газа одинаково по всем направлениям.

Закон назван в честь французского учёного Блеза Паскаля.

На основе закона Паскаля работают различные гидравлические устройства: тормозные системы, прессы и др.

Данный закон является прямым следствием отсутствия сил трения покоя в жидкостях и газах.

Закон Паскаля неприменим в случае движущейся жидкости (газа) — в этом случае необходимо пользоваться уравнениями гидродинамики, а также в случае, когда жидкость (газ) находится в гравитационном поле; так, известно, что атмосферное и гидростатическое давление уменьшается с высотой.

Закон сообщающихся сосудов — один из законов гидростатики, гласящий, что в сообщающихся сосудах уровни однородных жидкостей, считая от наиболее близкой к поверхности земли точки, равны.

Гидравлический пресс — это промышленная машина, которая позволяет, прилагая в одном месте небольшое усилие, одновременно получать в другом месте высокое усилие. Гидравлический пресс состоит из двух сообщающихся гидравлических цилиндров (с поршнями) разного диаметра. Цилиндр заполняется гидравлической жидкостью водой, маслом или другой подходящей жидкостью. По законам французского философа и гениального ученого Паскаля, давление (то есть сила, действующая на единицу площади) в любом месте жидкости (или газа), находящейся в покое, одинаково по всем направлениям и одинаково передается по всему объему. Закон Паскаля — самый главный закон гидростатики. Все заводы гидравлических прессов при их производстве основываются на этом законе гидростатики. По сути гидравлический пресс можно сравнить с эффектом рычага, где в качестве передающего усилие объекта используется жидкость, а усилие зависит от величины отношения площадей рабочих поверхностей.

Билет 5

Преобразова́ния Галиле́я — в классической механике (механике Ньютона) преобразования координат и времени при переходе от одной инерциальной системы отсчета (ИСО) к другой[1]. Термин был предложен Филиппом Франком в 1909 году.[2] Преобразования Галилея подразумевают одинаковость времени во всех системах отсчета («абсолютное время»[3]) и выполнение принципа относительности (принцип относительности Галилея (см. ниже)).

  • Преобразования Галилея являются предельным (частным) случаем преобразований Лоренца для скоростей, малых по сравнению со скоростью света в пустоте и в ограниченном объёме пространства. Для скоростей вплоть до порядка скоростей движения планет в Солнечной системе (и даже бо́льших), преобразования Галилея приближенно верны с очень большой точностью.

Вид преобразований при коллинеарных осях[4]

Если ИСО S движется относительно ИСО S' с постоянной скоростью   вдоль оси  , а начала координат совпадают в начальный момент времени в обеих системах, то преобразования Галилея имеют вид:

или, используя векторные обозначения,

Инерциа́льная систе́ма отсчёта (ИСО) — система отсчёта, в которой справедлив закон инерции: все свободные тела (то есть такие, на которые не действуют внешние силы или действие этих сил компенсируется) движутся прямолинейно и равномерно или покоятся[1]. Эквивалентной является следующая формулировка, удобная для использования в теоретической механике[2]:

Инерциальной называется система отсчёта, по отношению к которой пространство является однородным и изотропным, а время — однородным.

Взаимодействие молекул

Твердые тела и жидкости не распадаются на отдельные молекулы, несмотря на то что их молекулы разделены промежутками и находятся в непрерывном беспорядочном движении.

Более того, твердое тело, например, трудно растянуть или сломать. Чем же объяснить, что молекулы в телах не только удерживаются друг около друга, но и в некоторых случаях промежутки между ними трудно увеличить? Дело в том, чтомежду молекулами тела существует взаимное притяжение. Каждая молекула притягивает к себе соседние молекулы и сама притягивается к ним.

Однако если мы разломим кусочек мела на две части и снова соединим их, то они уже не будут удерживаться друг около друга. Почему?

Притяжение между молекулами становится заметным лишь тогда, когда они находятся очень близко одна от другой. Уже на расстоянии, размером несколько большем самих молекул, притяжение молекул значительно ослабевает и перестает проявляться. Ничтожно малой щели между частицами двух кусочков мела (меньше 0,000001 см) уже достаточно, чтобы притяжение между молекулами практически исчезло.

Почему же тогда слипаются куски замазки или пластилина? Именно потому, что их можно сблизить на такое расстояние, на котором большинство молекул начинает удерживаться силами притяжения друг возле друга.

Слипаются и не разрываются даже при сравнительно большой нагрузке (рис. 74) и два куска свинца, очень плотно прижатые друг к другу свежими ровными срезами. И наоборот, кусочки разбитого стекла не слипаются друг с другом, потому что они соприкасаются только в некоторых точках, и большинство их молекул оказывается на расстояниях, на которых притяжение молекул является слишком слабым.    

Число́ Авога́дроконста́нта Авогадро — физическая константа, численно равная количеству специфицированных структурных единиц (атомов, молекул, ионов,электронов или любых других частиц) в 1 моле вещества. Определяется как количество атомов в 12 граммах (точно) чистого изотопа углерода-12. Обозначается обычно как NA, реже как L [1].

Значение числа Авогадро, рекомендованное CODATA в 2010 году [2]:

NA = 6,02214129(27)·1023 моль−1.

В начале 2011 года опубликованы[3] (но официально пока не приняты) ещё более точные измерения числа Авогадро: NA = 6,022 140 78(18)·1023 моль−1.

Моль — количество вещества, которое содержит NA структурных элементов (то есть столько же, сколько атомов содержится в 12 г 12С), причём структурными элементами обычно являются атомы, молекулы, ионы и др. Масса 1 моля вещества (молярная масса), выраженная в граммах, численно равна его молекулярной массе, выраженной в атомных единицах массы. Так, 1 моль натрия имеет массу 22,9898 г и содержит примерно 6,02·1023 атомов; 1 моль фторида кальция CaF2 имеет массу(40,08 + 2×18,998) = 78,076 г и содержит 6,02·1023 молекул, как и 1 моль тетрахлорида углерода CCl4, масса которого равна (12,011 + 4×35,453) = 153,823 г и т. п.

В конце 2011 года на XXIV Генеральной конференции по мерам и весам единогласно принято предложение[4] определить моль в будущей версии СИ таким образом, чтобы избежать его привязки к массе; при этом число Авогадро будет определено как точная целая константа, близкая к последнему значению, рекомендованномуCODATA.

Идеальный газ — математическая модель газа, в которой предполагается, что потенциальной энергией взаимодействия молекулможно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

Модель широко применяется для решения задач термодинамики газов и задач аэрогазодинамики. Например, воздух при атмосферном давлении и комнатной температуре с большой точностью описывается данной моделью. В случае экстремальных температур илидавлений требуется применение более точной модели, например модели газа Ван-дер-Ваальса, в котором учитывается притяжение между молекулами.

Различают классический идеальный газ (его свойства выводятся из законов классической механики и описываются статистикой Больцмана) и квантовый идеальный газ (свойства определяются законами квантовой механики, описываются статистиками Ферми — Дирака или Бозе — Эйнштейна).

Свойства идеального газа на основе молекулярно-кинетических представлений определяются исходя из физической модели идеального газа, в которой приняты следующие допущения:

  • Диаметр молекулы   пренебрежимо мал по сравнению со средним расстоянием между ними ([6][7].

  • Импульс передается только при соударениях то есть, силы притяжения между молекулами не учитываются, а силы отталкивания возникают только при соударениях.

  • Суммарная энергия частиц газа постоянна если нет передачи тепла или совершения газом работы.

В этом случае частицы газа движутся независимо друг от друга, давление газа на стенку равно сумме импульсов в единицу времени, переданной при столкновении частиц со стенкой, энергия — сумме энергий частиц газа.

По эквивалентной формулировке идеальный газ - такой газ, который одновременно подчиняется закону Бойля — Мариотта и Гей-Люссака[7], то есть:

где   — давление,   — абсолютная температура. Свойства идеального газа описываются уравнением Менделеева — Клапейрона

,

где   - универсальная газовая постоянная,   — масса,   — молярная масса.

или

где   — концентрация частиц,   — постоянная Больцмана.

Для любого идеального газа справедливо соотношение Майера:

где   — универсальная газовая постоянная,   — молярная теплоемкость при постоянном давлении,   — молярная теплоемкость при постоянном объёме.

Билет 6

И́мпульс (Количество движения) — векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости:

.

В более общем виде, справедливом также и в релятивистской механике, определение имеет вид:

Импульс — это аддитивный интеграл движения механической системы, связанный согласно теореме Нётер с фундаментальной симметрией — однородностью пространства.

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, — однородность пространства.

Уравнение Теплового Баланса. Первый Закон Термодинамики

Если тела образуют замкнутую систему и между ними происходит только теплообмен, то алгебраическая сумма полученных Qnи отданных Q0энергий равна нулю:

Полученная Qn и отданная Q0 теплоты численно равны, но Qn берется со знаком плюс, a Q0 - со знаком минус.

Итак, изменить внутреннюю энергию системы можно двумя способами: путем совершения работы (дельта U1 = A) и путем сообщения системе количества теплоты (дельта U2 = Q).

Билет 7

Неинерциа́льная систе́ма отсчёта — система отсчёта, не являющаяся инерциальной. Всякая система отсчета, движущаяся с ускорением относительно инерциальной, является неинерциальной.

При рассмотрении уравнений движения тела в неинерциальной системе отсчета необходимо учитывать дополнительные силы инерции. Законы Ньютона выполняются только в инерциальных системах отсчёта. Для того, чтобы найти уравнение движения в неинерциальной системе отсчёта, нужно знать законы преобразования сил и ускорений при переходе от инерциальной системы к любой неинерциальной.

Классическая механика постулирует следующие два принципа:

  1. время абсолютно, то есть промежутки времени между любыми двумя событиями одинаковы во всех произвольно движущихся системах отсчёта;

  2. пространство абсолютно, то есть расстояние между двумя любыми материальными точками одинаково во всех произвольно движущихся системах отсчёта.

Эти два принципа позволяют записывать уравнение движения материальной точки относительно любой неинерциальной системы отсчёта, в которой не выполняетсяпервый закон Ньютона.

Основное уравнение динамики относительного движения материальной точки имеет вид:

,

где   — масса тела,   — ускорение тела относительно неинерциальной системы отсчёта,   — сумма всех внешних сил, действующих на тело,   — переносное ускорение тела,   — кориолисово ускорение тела.

Это уравнение может быть записано в привычной форме Второго закона Ньютона, если ввести фиктивные силы инерции:

  •  — переносная сила инерции

  •  — сила Кориолиса

Сила инерции (также инерционная сила) — термин, широко применяемый в различных значениях в точных науках, а также, как метафора, в философииистории,публицистике и художественной литературе.

В точных науках сила инерции обычно представляет собой понятие, привлекаемое в целях удобства при рассмотрении движения материальных тел в неинерциальной системе отсчёта[1]. Частными случаями такой силы инерции являются центробежная сила и сила Кориолиса. Кроме того, силу инерции применяют для формальной возможности записывать уравнения динамики как более простые уравнения статики (кинетостатика, основанная на принципе Д’Аламбера)[2].

Вне контекста физики или математики термин «сила инерции» обычно означает некоторое свойство рассматриваемого явления, которое затрудняет изменения и, тем самым, обеспечивает поддержание status quo. В этом употреблении смысл термина зачастую никак не связан с физическим перемещением (изменением положения в пространстве) и понятием силы[3]. За исключением этого параграфа, статья посвящена значениям термина «сила инерции» в точных науках.

Центробе́жная си́ла[1] — сила инерции, которую вводят во вращающейся (неинерциальнойсистеме отсчёта[2] (чтобы применятьзаконы Ньютона, рассчитанные только на инерциальные СО) и которая направлена от оси, вокруг которой происходит вращение тела — или — в более общем случае — от центра вращения (отсюда и название).

Также центробежной силой, особенно в технической литературе, называют силу, действующую со стороны движущегося по круговой траектории тела на вызывающие это вращение связи, равная по модулю центростремительной силе и всегда направленная в противоположную ей сторону.

Физический смысл

Для того, чтобы тело двигалось с центростремительным ускорением по окружности, необходимо приложение к телу центростремительной силы, равной  , где   — центростремительное ускорение.

В этом случае сила, действующая на связь   будет иметь право называться центробежной силой. Тогда, по третьему закону Ньютона:

В инерциальных системах отсчёта действует закон инерции, то есть, в отсутствие действующих на него сил каждое тело движется по прямой и с постоянной скоростью. Если рассмотреть причину поворота тела, то станет ясно, что для его осуществления требуется придавать телу ускорение, изменяющее направление движения тела, что достигается приложением к нему силы, направление которой не совпадает с касательной к его траектории. Тогда поворот будет происходить под действием той составляющей этой силы, которая будет направлена перпендикулярно к касательной траектории, которая и будет центростремительной силой в самом общем случае движения по любой траектории.

В общем случае центр поворота не лежит на направлении действующей на тело силы, вызывающей отклонение движения от прямолинейного. Так, например, при движении Земли вокруг Солнца по своей эллиптической орбите центростремительная сила совпадает по направлению с действующей на Землю силой взаимного тяготения Земли и Солнца лишь в афелии и перигелии.

Направление действия связи при движении по любой траектории, отличающейся от круговой, в общем случае не совпадает с направлением силы центростремительной, понимаемой, как нормальная составляющая действующей на тело силы.

В случае реального орбитального движения единственной силой, действующей на Землю, является сила тяготения. В таком случае называть, как это имеет место при движении по окружности, силу, действующую на связь, силой центробежной неверно, поскольку в общем случае мгновенный центр поворота тела по дуге окружности, которой аппроксимируется траектория в каждой её точке, не совпадает с началом вектора силы, вызывающей движение. Поэтому некоторые физики вообще избегают использовать термин «центробежная сила», как ненужный.[3] Что касается составляющей силы связи, направленной по касательной траектории, то, она будет изменять скорость движения по ней.

Формулировка

Обычно понятие центробежной силы используется в рамках классической (Ньютоновской) механики, в каковых остается основная часть данной статьи (хотя обобщение этого понятия и может быть в некоторых случаях достаточно легко получено для релятивистской механики).

По определению центробежной силой называется сила инерции (то есть в общем случае — часть полной силы инерции) в неинерциальной системе отсчета, не зависящая от скорости движения материальной точки в этой системе отсчета, а также не зависящая от ускорений (линейных или угловых) самой этой системы отсчета относительно инерциальной системы отсчета.

Для материальной точки центробежная сила выражается формулой:

где:

 — центробежная сила приложенная к телу,

 — масса тела,

 — угловая скорость вращения неинерциальной системы отсчёта относительно лабораторной (направление вектора угловой скорости определяется по правилу буравчика),

 — радиус-вектор тела во вращающейся системе координат.

Эквивалентное выражение для центробежной силы можно записать как

если использовать обозначение   для вектора, перпендикулярного оси вращения и проведенного от неё к данной материальной точке.

Центробежная сила для тел конечных размеров может быть рассчитана (как это обычно делается и для любых других сил) суммированием центробежных сил, действующих на материальные точки, являющиеся элементами, на которые мы мысленно разбиваем конечное тело.

Плавле́ние —это процесс перехода тела из кристаллического твёрдого состояния в жидкое. Плавление происходит с поглощением удельной теплоты плавления и является фазовым переходом первого рода.

Способность плавиться относится к физическим свойствам вещества [1]

При нормальном давлении, наибольшей температурой плавления среди металлов обладает вольфрам (3422 °C), среди простых веществ - углерод (по разным данным 3500 — 4500 °C[2]) а среди произвольных веществ — карбид гафния HfC (3890 °C). Можно считать, что самой низкой температурой плавления обладает гелий: при нормальном давлении он остаётся жидким при сколь угодно низких температурах.

Многие вещества при нормальном давлении не имеют жидкой фазы. При нагревании они путем сублимации сразу переходят в газообразное состояние.

Парообразование — свойство капельных жидкостей изменять свое агрегатное состояние и превращаться в пар. Парообразование, происходящее лишь на поверхности капельной жидкости, называется испарением. Парообразование по всему объему жидкости называется кипением; оно происходит при определенной температуре, зависящей от давления. Давление, при котором жидкость закипает при данной температуре, называется давлением насыщенных паров  , его значение зависит от рода жидкости и ее температуры.

Насы́щенный пар — это пар, находящийся в термодинамическом равновесии с жидкостью или твёрдым телом того же состава.

Давление насыщенного пара связано определённой для данного вещества зависимостью от температуры. Когда внешнее давление падает ниже давления насыщенного пара, происходит кипение (жидкости) или возгонка (твёрдого тела); когда оно выше — напротив, конденсация или десублимация.

Абсолютная и относительная влажность

Вес, или точнее масса, водяного пара, содержащегося в 1 м3 воздуха, называется абсолютной влажностью воздуха. Другими словами, это плотность водяного пара в воздухе. При одной и той же температуре воздух может поглотить вполне определенное количество водяного пара и достичь состояния полного насыщения. Абсолютная влажность воздуха в состоянии его насыщения носит название влагоемкости.

Величина влагоемкости воздуха резко возрастает с увеличением его температуры. Отношение величины абсолютной влажности воздуха при данной температуре к величине его влагоемкости при той же температуре называется относительной влажностью воздуха.

Для определения температуры и относительной влажности воздуха пользуются специальным прибором — психрометром. Психрометр состоит из двух термометров. Шарик одного из них увлажняется с помощью марлевого чехла, конец которого опущен в сосуд с водой. Другой термометр остается сухим и показывает температуру окружающего воздуха. Смоченный термометр показывает температуру более низкую, чем сухой, так как испарение влаги из марли требует определенного расхода тепла. Температура смоченного термометра носит название предела охлаждения. Разность между показаниями сухого и смоченного термометров называется психрометрической разностью.

Между величиной психрометрической разности и относительной влажностью воздуха имеется определенная зависимость. Чем больше психрометрическая разность при данной температуре воздуха, тем меньше относительная влажность воздуха и тем больше влаги может поглотить воздух. При разности равной нулю воздух насыщен водяным паром и дальнейшего испарения влаги в таком воздухе не происходит.

Формулы

Абсолютная влажность воздуха (f) — это количество водяного пара, фактически содержащегося в 1м3 воздуха: f = (масса содержащегося в воздухе водяного пара)/(объём влажного воздуха) Обычно используемая единица абсолютной влажности: (f) = г/м3

Относительная влажность: φ = (абсолютная влажность)/(максимальная влажность) Относительная влажность обычно выражается в процентах. Эти величины связаны между собой следующим отношением: φ = (f×100)/fmax

Билет 8

СЛОЖЕНИЕ СИЛ - нахождение геометрической суммы (т. н. главного вектора) данной системы сил путем последовательного применения правила параллелограмма сил или построения силового многоугольника. Для сил, приложенных в одной точке, при сложении сил определяется их равнодействующая. 

Импульс замкнутой системы остается постоянным.

(Процессы см. ранее в билетах)

Билет 9

Тре́ние — процесс взаимодействия тел при их относительном движении (смещении) либо при движении тела в газообразной или жидкой среде. По-другому называетсяфрикционным взаимодействием (англ. friction). Изучением процессов трения занимается раздел физики, который называется механикой фрикционного взаимодействия, или трибологией.

Трение главным образом имеет электронную природу при условии, что вещество находится в нормальном состоянии. В сверхпроводящем состоянии вдалеке от критической температуры основным «источником» трения являются фононы, а коэффициент трения может уменьшиться в несколько раз[ссылка 1].