Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика шпора 3-ой семестр.doc
Скачиваний:
14
Добавлен:
23.09.2019
Размер:
1.36 Mб
Скачать

Дифракция света на одной щели

Пусть в непрерывном экране есть щель: ширина щели   , длина щели (перпендикулярно плоскости листа)   (рис. 9.5). На щель падают параллельные лучи света. Для облегчения расчета считаем, что в плоскости щели АВ амплитуды и фазы падающих волн одинаковы.

Рис. 9.5

Разобьем щель на зоны Френеля так, чтобы оптическая разность хода между лучами, идущими от соседних зон, была равна   .

Если на ширине щели укладывается четное число таких зон, то в точке   (побочный фокуслинзы) будет наблюдаться минимум интенсивности, а если нечетное число зон, то максимум интенсивности:

 – условие минимума интенсивности;

(9.4.1)

 – условие максимума интенсивности

(9.4.2)

Картина будет симметричной относительно главного фокуса точки   . Знак плюс и минус соответствует углам, отсчитанным в ту или иную сторону.

Интенсивность света   . Как видно из рис. 9.5, центральный максимум по интенсивности превосходит все остальные.

Рассмотрим влияние ширины щели.

Т.к. условие минимума имеет вид   , отсюда

.

(9.4.3)

Из этой формулы видно, что с увеличением ширины щели b положения минимумов сдвигаются к центру, центральный максимум становится резче.

При уменьшении ширины щели b вся картина расширяется, расплывается, центральная полоска тоже расширяется, захватывая все большую часть экрана, а интенсивность ее уменьшается.

Дифракция света на дифракционной решетке

Одномерная дифракционная решетка представляет собой систему из большого числа Nодинаковых по ширине и параллельных друг другу щелей в экране, разделенных также одинаковыми по ширине непрозрачными промежутками (рис. 9.6).

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

Обозначим: b – ширина щели решетки; а – расстояние между щелями;   – постоянная дифракционной решетки.

Линза собирает все лучи, падающие на нее под одним углом и не вносит никакой дополнительной разности хода.

Рис. 9.6

Рис. 9.7

Пусть луч 1 падает на линзу под углом φ (угол дифракции). Световая волна, идущая под этим углом от щели, создает в точке   максимум интенсивности. Второй луч, идущий от соседней щели под этим же углом φ, придет в ту же точку   . Оба эти луча придут в фазе и будут усиливать друг друга, если оптическая разность хода будет равна mλ:

Условие максимума для дифракционной решетки будет иметь вид:

,

(9.4.4)

где m = ± 1, ± 2, ± 3, … .

Максимумы, соответствующие этому условию, называются главными максимумами. Значение величины m, соответствующее тому или иному максимуму называется порядком дифракционного максимума.

В точке F0 всегда будет наблюдаться нулевой или центральный дифракционный максимум.

Так как свет, падающий на экран, проходит только через щели в дифракционной решетке, то условие минимума для щели и будет условием главного дифракционного минимума для решетки:

.

(9.4.5)

Конечно, при большом числе щелей, в точки экрана, соответствующие главным дифракционным минимумам, от некоторых щелей свет будет попадать и там будут образовываться побочныедифракционные максимумы и минимумы (рис. 9.7). Но их интенсивность, по сравнению с главными максимумами, мала (≈ 1/22).

При условии   ,

волны, посылаемые каждой щелью, будут гаситься в результате интерференции и появятсядополнительные минимумы.

Количество щелей определяет световой поток через решетку. Чем их больше, тем большая энергия переносится волной через нее. Кроме того, чем больше число щелей, тем больше дополнительных минимумов помещается между соседними максимумами. Следовательно, максимумы будут более узкими и более интенсивными (рис. 9.8).

Рис. 9.8

Из (9.4.3) видно, что угол дифракции пропорционален длине волны λ. Значит, дифракционная решетка разлагает белый свет на составляющие, причем отклоняет свет с большей длиной волны (красный) на больший угол (в отличие от призмы, где все происходит наоборот).

Это свойство дифракционных решеток используется для определения спектрального состава света (дифракционные спектрографы, спектроскопы, спектрометры).

Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья.

Виды решеток:

Отражательные: Штрихи нанесены на зеркальную (металлическую) поверхность, и наблюдение ведется в отраженном свете

Прозрачные: Штрихи нанесены на прозрачную поверхность (или вырезаются в виде щелей на непрозрачном экране), наблюдение ведется в проходящем свете.

Описание явления:

Фронт световой волны разбивается штрихами решётки на отдельные пучки когерентного света. Эти пучки претерпевают дифракцию на штрихах и интерферируют друг с другом. Так как для каждой длины волны существует свой угол дифракции, то белый свет раскладывается в спектр.

Формулы:

Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d.

Если известно число штрихов (N), приходящихся на 1 мм решётки, то период решётки находят по формуле: d = 1 / N мм.

Условия главных дифракционных максимумов, наблюдаемых под определенными углами, имеют вид:

где

d — период решётки,

α — угол максимума данного цвета,

k — порядок максимума,

λ — длина волны.

Условие наблюдения максимума интенсивности света:

где n- порядок максимума

Условие наблюдения минимума интенсивности света:

m – порядок минимума

11+ Поляризация света. Поляризация при отражении и преломлении света.

ПОЛЯРИЗАЦИЯ СВЕТА, упорядоченность в ориентации вектора напряженности электрического E и магнитного H полей световой волны в плоскости, перпендикулярной распространению света. Различают линейную поляризацию света, когда E сохраняет постоянные направления (плоскость, в которой лежит E и световой луч, называется плоскостью поляризации), эллиптическую, при которой конец E описывает эллипс, и круговую (конец E описывает круг). Обычный (естественный) свет не поляризован. Поляризация света возникает при отражении, преломлении света, прохождении через анизотропную среду. Первые указания на поперечную анизотропию светового луча получены Х. Гюйгенсом в 1690; понятие "поляризация света" было введено И. Ньютоном в 1705, а объяснена поляризация света электромагнитной теорией света Дж.К. Максвелла. Поляризованный свет широко используется во многих областях техники (например, для плавной регулировки света, при исследовании упругих напряжений и т.д.). Человеческий глаз не различает поляризацию света, а глаза некоторых насекомых, например пчел, воспринимают ее.

12+ Двойное лучепреломление. Получение поляризованного света. Закон Малюса.

Двойное лучепреломление — эффект расщепления в анизотропных средах луча света на две составляющие. 

Двойное преломление света

В 1669 г. датский ученый Эразм Бартолин опубликовал работу, в которой сообщил об открытии нового физического явления – двойного преломления света. Рассматривая преломление света в кристалле исландского шпата (   ), Бартолин обнаружил, что луч внутри кристалла расщепляется на два луча (рис. 11.7). Если кристалл поворачивать относительно направления первоначального луча, то поворачиваются оба луча, прошедшие через кристалл. Один из лучей вел себя согласно известному закону преломления света, а второй совершенно необычно. Поэтому Бартолин первый луч назвал обыкновенным, а второйнеобыкновенным.

 

Рис. 11.7

Кроме того, Бартолин обнаружил, что луч света, падая в определенном направлении в кристалле исландского шпата, не раздваивается.

Объяснение этому явлению дал современник Бартолина - голландский ученый Христиан Гюйгенс. Он показал, что необычное поведение луча света, проходящего через исландский шпат, связано с анизотропией кристалла. Направление, вдоль которого падающий луч не раздваивается, Гюйгенс назвал оптической осью, и кристаллы, имеющие одну оптическую ось, –одноосными кристаллами (исландский шпат, турмалин). Оптические свойства одноосного кристалла одинаковы вдоль всех направлений, образующих один и тот же угол с оптической осью. Любая плоскость, проходящая через оптическую ось, называется главным сечением кристалла. Существуют кристаллы, у которых имеются две оптические оси. Такие кристаллы называют двухосными (гипс, слюда).

В своей книге «Трактат о свете», изданной в Лейдене в 1690 г., Гюйгенс подробно объяснил явление двойного преломления света. Благодаря своим исследованиям Гюйгенс подошел к открытию явления поляризации света, однако решающего шага он сделать не смог, поскольку световые волны в его теории предполагались продольными.

Рассмотрим подробнее явление двойного лучепреломления. Оно заключается в том, что луч внутри кристалла расщепляется на два луча. Один из них подчиняется известному закону преломления Снеллиуса:   , этот луч о обыкновенный, а другой не подчиняется –необыкновенный луч е. Выглядит это так, как показано на рис. 11.8, а.

а

б

Рис. 11.8

Исследования показали, что обыкновенный и необыкновенный лучи являются полностью поляризованными во взаимно перпендикулярных направлениях.

Плоскость колебаний обыкновенного луча перпендикулярна главному сечению, а необыкновенного луча – совпадает с главным сечением. На выходе из кристалла оба луча распространяются в одинаковом направлении и различаются лишь направлением поляризации (рис. 11.8, б).

Явление двойного лучепреломления используется для получения поляризованного света.

Естественный свет, испускаемый любым источником — солнцем, электрической лампой, газовой горелкой и т. д., — не поляризован, то есть он состоит из колебаний, которые не направлены специально ни в вертикальном, ни в горизонтальном, ни в каком-либо другом направлении. Эти световые колебания распространяются во всевозможных плоскостях, перпендикулярных к линии направления света.

Слово «поляризация» означает, что колебания происходят в каком-нибудь одном направлении-. Если колебания происходят вертикально, то это значит, что распространяются волны, колебания которых происходят вверху и внизу, то-есть свет поляризован вертикально. Если же мы говорим, что свет поляризован горизонтально, то под этим подразумеваем, что колебания происходят вправо и влево под прямым углом к линии распространения света.

Для получения поляризованного света и его обнаружения существуют специальные физические приборы, называемые в первом случае поляризаторами, а во втором анализаторами. Обычно они устроены одинаково.

Существует.несколько способов получения и анализа поляризованного света.

1. Поляризация при помощи поляроидов. Поляроиды представляют собой целлулоидные пленки с нанесенным на них тончайшим слоем кристалликов сернокислого нодхинина. Применение полярой^ дов является в настоящее время наиболее распространенным способом поляризации света.

2.         Поляризация     посредством

отражения. Если естественный луч света

падает на черную   полированную   поверх

ность,  то  отраженный   луч    оказывается

частично поляризованным. В качестве поля

ризатора и анализатора может быть упот

реблено зеркальное или достаточно хорошо

отполированное  обычное   оконное   стекло,

зачерненное с одной стороны асфальтовым

лаком.

Степень поляризации тем больше, чем правильнее выдержан угол падения. Для стекла угол падения равен 57°.

3.         Поляризация     посредством

п р е л о м л е н и я. Световой луч   поляри

зуется не только при отражении, но и при

преломлении. В этом случае в качестве поля

ризатора и анализатора используется стопка

сложенных ©месте 10—15 тонких стеклянных

пластинок, расположенных к падающим на

них световым лучам под углом в 57°.

Степень поляризации – количественная характеристика поляризации

где Imax и Imin – интенсивности света после прохождения анализатора.

а) Естественный свет Iпол = 0; P = 0;

б) Поляризованный свет Iпол = Iо; P = 1.

Закон Малюса — зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла   между плоскостями поляризации падающего света и поляризатора.

где I0 — интенсивность падающего на поляризатор света, I — интенсивность света, выходящего из поляризатора.

Установлен Э. Л. Малюсом в 1810 году.

Свет с иной (не линейной) поляризацией может быть представлен в виде суммы двух линейно-поляризованных составляющих, к каждой из которых применим закон Малюса. По закону Малюса рассчитываются интенсивности проходящего света во всех поляризационных приборах, например в поляризационных фотометрах и спектрофотометрах. Потери на отражение, зависящие от   и не учитываемые законом Малюса, определяются дополнительно.

13+ Тепловое излучение, его характеристики. Закон Кирхгофа.

Теплово́е излуче́ние — электромагнитное излучение со сплошным спектром, испускаемое нагретыми телами за счёт ихвнутренней энергии. Один из трёх элементарных видов переноса тепловой энергии (помимо теплопроводности и конвекции).

В физике для расчёта теплового излучения принята модель абсолютно чёрного тела, тепловое излучение которого описывается законом Стефана — Больцмана. Излучение же реальных тел подчиняется закону излучения Кирхгофа.

Равновесное излучение - излучение, находящееся в термодинамическом равновесии с телами, имеющими определенную температуру.

Основные свойства:

а) самое распространенное в природе, происходит за счет теплового движения атомов и молекул, наблюдается у тел с T > 0 ;

б) Характеризуется сплошным спектром.

С ростом Т интенсивность излучения увеличивается.

в) единственный вид излучения которое может быть равновесным.

г) нагретые тела постоянно излучают энергию.

е) в равновесном состоянии количество энергии, которое поглощяется равно количеству энергии которое выделяется.

ж) излучательная способность – энергия излучаемая за единицу времени с единицы поверхности в интервале частот ν, ν÷dν делённая на ширину интервала частот dν.

Энергетическая светимость:

- вся энергия излучаемая единицей поверхности тела в единицу времени.

Поглощательная способность:

dWпогл – энергия которая поглощается в единицу времени с единицы поверхности в диапозоне частот от ν до ν+.

dW – энергия которая падает на тело в единицу времени на единицу поверхности в диапохоне частот от ν до ν+.

Закон излучения Кирхгофа — физический закон, установленный немецким физиком Кирхгофом в 1859 году.

В современной формулировке закон звучит следующим образом:

Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы, химического состава и проч.

Известно, что при падении электромагнитного излучения на некоторое тело часть его отражается, часть поглощается и часть может пропускаться. Доля поглощаемого излучения на данной частоте называется поглощательной способностью тела  . С другой стороны, каждое нагретое тело излучает энергию по некоторому закону  , именуемым излучательной способностью тела.

Величины   и   могут сильно меняться при переходе от одного тела к другому, однако согласно закону излучения Кирхгофа отношение испускательной и поглощательной способностей не зависит от природы тела и является универсальной функцией частоты (длины волны) и температуры:

По определению, абсолютно чёрное тело поглощает всё падающее на него излучение, то есть для него  . Поэтому функция  совпадает с излучательной способностью абсолютно чёрного тела, описываемой законом Стефана — Больцмана, вследствие чего излучательная способность любого тела может быть найдена исходя лишь из его поглощательной способности.

14+ Законы излучения абсолютно чёрного тела. Формула Планка.

Абсолютно чёрное тело — физическая абстракция, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой. (Поглощающая способность тела равна 1)

Законы излучения для а.ч.т:

1 - Закон Стефана — Больцмана

Основная статьяЗакон Стефана — Больцмана

Общая энергия теплового излучения определяется законом Стефана — Больцмана, который гласит:

Мощность излучения абсолютно чёрного тела (интегральная мощность по всему спектру), приходящаяся на единицу площади поверхности, прямо пропорциональна четвёртой степени температуры тела:

,

где j — мощность на единицу площади излучающей поверхности, а

 Вт/(м²·К4) — постоянная Стефана — Больцмана.

Таким образом, абсолютно чёрное тело при T = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Для нечёрных тел можно приближённо записать:

где ε - степень черноты (для всех веществ ε < 1, для абсолютно черного тела ε = 1).

Константу Стефана — Больцмана σ можно теоретически вычислить только из квантовых соображений, воспользовавшись формулой Планка. В то же время общий вид формулы может быть получен из классических соображений (что не снимает проблемы ультрафиолетовой катастрофы).

2 - Закон смещения Вина

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина:

где T — температура в кельвинах, а λmax — длина волны с максимальной интенсивностью в метрах.

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36 °C (309 К) лежит на длине волны 9400 нм (винфракрасной области спектра).

Видимый цвет абсолютно чёрных тел с разной температурой представлен на диаграмме.

Формула планка:

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка:

где I(ν)dν — мощность излучения на единицу площади излучающей поверхности в диапазоне частот от ν доν + dν.

Эквивалентно,

,

где u(λ)dλ — мощность излучения на единицу площади излучающей поверхности в диапазоне длин волн отλ до λ + dλ.

15+ Фотоэффект.

Фотоэффект — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Различают:

Внешний – вырывание электронов с поверхности Ме, под действием света.

Внутренний – увеличение проводимости полупроводников под действием света, которое происходит из-за увеличения концентрации носителей.

Законы фотоэффекта:

1-ый закон фотоэффектаколичество электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально интенсивности света.

2-ой закон фотоэффектамаксимальная кинетическая энергия вырываемых светом электронов линейно возрастёт с частотой света и не зависит от его интенсивности.

3-ий закон фотоэффектадля каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света ν0 (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если ν<ν0, то фотоэффект уже не происходит.

Теоретическое объяснение этих законов было дано в 1905 году Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов (фотонов) с энергией hν каждый, где h — постоянная Планка. При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода, покидает металл:  , где   — максимальная кинетическая энергия, которую может иметь электрон при вылете из металла.

16+ Фотоны. Эффект Комптона.

Фотон — элементарная частица, квант электромагнитного излучения (в узком смысле — света).

Фотон — безмассовая нейтральная частица.

Физические свойства фотона:

а) энергия фотонов ε:

Связь с волновыми характеристиками или .

б) масса фотона m – находится из взаимосвязи энергии и массы:

; или так как

в) импульс фотона:

Из и или

г) масса покоя фотона по теории относительности:

Для фотона , ; масса покоя.

Эффект Комптона (Комптон-эффект) — явление изменения длины волны электромагнитного излучениявследствие рассеивания его электронами. 

При рассеянии фотона на покоящемся электроне частоты фотона   и   (до и после рассеяния соответственно) связаны соотношением:

где   — угол рассеяния (угол между направлениями распространения фотона до и после рассеяния).

Перейдя к длинам волн:

где   — комптоновская длина волны электрона.

Для электрона   м. Уменьшение энергии фотона после комптоновского рассеяния называется комптоновским сдвигом. В классической электродинамике рассеяние электромагнитной волны на заряде (томсоновское рассеяние) не сопровождается уменьшением её частоты.

Объяснить эффект Комптона невозможно в рамках классической электродинамики. С точки зрения классической физики электромагнитная волна является непрерывным объектом и в результате рассеяния на свободных электронах изменять свою длину волны не должна. 

17+ Закономерности в атомных спектрах. Модель атома Томпсона. Опыты Резерфорда.

Модель атома Томсона (модель «Пудинг с изюмом», англ. Plum pudding model). Дж. Дж. Томсон предложил рассматривать атом как некоторое положительно заряженное тело с заключёнными внутри него электронами. Эта модель не объясняла дискретный характер излучения атома и его устойчивость.[источник не указан 390 дней] Была окончательно опровергнута Резерфордом после проведённого им знаменитого опыта по рассеиванию альфа-частиц.

Дж.Дж.Томсон в 1903 году выдвинул гипотезу о том, что электрон находится внутри атома. Но атом в целом нейтральный, поэтому ученый предположил, что отрицательные электроны окружены в атоме положительно заряженным веществом. Атом, по мысли Дж. Томсона, очень похож на пудинг с изюмом: электроны, как "изюминки", а "каша" - положительно заряженное вещество атома (см. рис из "Открытая физика" 2.5)

А́том (др.-греч. ἄτομος — неделимый) — наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств.[1]. Атом состоит из атомного ядра и окружающего его электронного облака. Ядро атома состоит из положительно заряженных протонов и электрически нейтральных нейтронов, а окружающее его облако состоит из отрицательно заряженных электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов —изотопу этого элемента.

Атомы различного вида в разных количествах, связанные межатомными связями, образуют молекулы.