Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика шпора 3-ой семестр.doc
Скачиваний:
3
Добавлен:
23.09.2019
Размер:
1.36 Mб
Скачать

1+ Некоторые свойства электромагнитных волн. Шкала электромагнитных волн.

Колебания, возникающие под действием сил внутри самой системы называют собственными колебаниями.

Уравнение плоской электромагнитной волны:

A - амплитуда колебания;

φ0 - начальная фаза;

ω0 – собственная частота колебания

k – волновое число.

Свойства электромагнитных волн:

  1. В плоской электромагнитной волне колебания H и E Происходят во взаимно перпендикулярных направлениях и перпендикулярны скорости распространения электромагнитной волны:

  1. Скорость распространения всех электромагнитных волн:

где c – скорость распространения электромагнитной волны, ε – электрическая проницаемость среды, n – показатель преломления.

  1. Вектора E и H колеблются в одной фазе (т.е. max и min совпадают по времени).

  1. Наблюдается явление дисперсии:

- частота; n – показатель преломления.

Распространение волн зависит от частоты.

  1. Монохроматическая синусоидальная плоская волна (волна распределяется вдоль оси X):

  1. Плоско поляризованная волна – волна, у которой колебания E происходят в одной плоскости.

Шкала электромагнитных волн:

Наименование

Длина, м

Частота, Гц

Сверхдлинные

106-104

3*102- 3*104

Длинные (радиоволны)

104-103

3*104- 3*105

Средние(радиоволны)

103 -102

3*105- 3*106

Короткие(радиоволны)

102-101

3*106- 3*107

Ультракороткие

101-10-1

3*107- 3*109

Телевидение (СВЧ)

10-1-10-2

3*109- 3*1010

Радиолокация (СВЧ)

10-2-10-3

3*1010- 3*1011

Инфракрасное излучение

10-3-10-6

3*1011- 3*1014

Видимый свет

10-6-10-7

3*1014- 3*1015

Ультрафиолетовое излучение

10-7-10-9

3*1015- 3*1017

Рентгеновское излучение(мягкое)

10-9-10-12

3*1017- 3*1020

Гамма-излучение (жесткое)

10-12-10-14

3*1020- 3*1022

Космические лучи

 ≤10-14

≤3*1022

2+ Вектор Пойнтинга.

Вектор Пойнтинга (также вектор Умова-Пойнтинга) — вектор плотности потока энергии электромагнитного поля. Вектор Пойнтинга S можно определить через векторное произведение двух векторов:

Обозначай через p

 (в системе СГС),

 (в системе СИ),

– среднее значение

где E и H — вектора напряжённости электрического и магнитного полей соответственно.

 (в комплексной форме),

где E и H — вектора комплексной амплитуды электрического и магнитного полей соответственно.

Этот вектор по модулю равен количеству энергии, переносимой через единичную площадь, нормальную к S, в единицу времени. Своим направлением вектор определяет направление переноса энергии волны.

Поскольку тангенциальные к границе раздела двух сред компоненты E и H непрерывны, то вектор S непрерывен на границе двух сред.

Плотность количества движения (импульса) электромагнитного поля определяется вектором  . В этом соотношении проявляется материальность электромагнитного поля.

3+ Когерентные источники света.

Для образования устойчивой интерференционной картины необходимо, чтобы источники волн имели одинаковую частоту и разность фаз их колебания была постоянной. Источники, удовлетворяющие этому условию, называются когерентными.

Согласованность волн, которая заключается в том, что разность фаз остается неизменной с течением времени для любой точки пространства называется временной когерентностью.

Согласованность волн, которая заключается в том, что разность фаз остается постоянной в разных точках волновой поверхности, называется пространственной когерентностью.

Реальные источники практически не могут быть когерентными.

4+ Условие максимума и минимума интерференции волн. Оптический путь и оптическая разность хода.

Интерференция – явление наложения световых волн, при котором наблюдаются в разных точках пространства усиление и ослабление интенсивности света.

Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности.

Имеем две волны:

Суммарные колебания в точке пересечения волн определяются принципом суперпозиции:

максимум интенсивности

минимум интенсивности.

Оптический путь – путь, пройденный лучом от источника света до чего либо.

Оптическая разность хода равна разности оптических путей, каждый из которых равен произведению пути луча на абсолютный показатель преломления среды.

5+ Интерференция света от двух когерентных источников света. Опыт Юнга. Получение когерентных источников света.

Опыт Томаса Юнга стал экспериментальным доказательством волновой теории света — пучок света направляется на непрозрачный экран-ширму с двумя параллельными прорезями, позади которого устанавливается проекционный экран. Этот опыт показывает интерференцию света, что является доказательством волновой теории. Особенность прорезей в том, что их ширина приблизительно равна длине волны излучаемого света. 

Если исходить из того, что свет состоит из частиц (корпускулярная теория света), то на проекционном экране можно было бы увидеть только две параллельных полосы света, прошедших через прорези ширмы. Между ними, проекционный экран оставался бы практически неосвещенным.

С другой стороны, если предположить, что свет представляет собой распространяющиеся волны (волновая теория света), то, согласно принципу Гюйгенса, каждая прорезь является источником вторичных волн. Если вторичные волны достигнут линии в середине проекционного экрана, находящейся на равном удалении от прорезей, синхронно и в одной фазе, то на серединной линии экрана их амплитуды прибавятся, что создастмаксимум яркости. То есть, максимум яркости окажется там, где согласно кропускулярной теории, яркость должна быть практически нулевой. Корпускулярная теория света является неверной, когда прорези достаточно тонкие, создавая тем самым интерференции.

На определенном удалении от центральной линии, напротив, волны окажутся в противофазе — их амплитуды компенсируются, что создаст минимум яркости (темная полоса). По мере дальнейшего удаления от средней линии яркость периодически изменяется возрастая до максимума, и снова убывая.

На проекционном экране получается целый ряд чередующихся интерференционных полос, что и было продемонстрировано Томасом Юнгом.

Когерентные источники получают, разделив световую волну, идущую от одного источника на две.

6+ Интерференция света в тонких пластинках.

Интерференционные полосы равного наклона. При освещении тонкой пленки происходит наложение волн от одного и того же источника, отразившихся от передней и задней поверхностей пленки. При этом может возникнуть интерференция света. Если свет белый, то интерференционные полосы окрашены. Интерференцию в пленках можно наблюдать на стенках мыльных пузырей, на тонких пленках масла или нефти, плавающих на поверхности воды, на пленках, возникающих на поверхности металлов или зеркала.

Рассмотрим сначала плоскопараллельную пластинку толщины   с показателем преломления   (рис. 2.11). Пусть на пластинку падает плоская световая волна, которую можно рассматривать как параллельный пучок лучей. Пластинка отбрасывает вверх два параллельных пучка света, один из которых   образовался за счет отражения от верхней поверхности пластинки, второй   – вследствие отражения от нижней поверхности. Каждый из этих пучков представлен на рис. 2.11 только одним лучом.

При входе в пластинку и при выходе из нее пучок 2 претерпевает преломление. Кроме двух пучков   и  , пластинка отбрасывает вверх пучки, возникающие в результате трех-, пяти- и т.д. кратного отражения от поверхностей пластинки. Однако ввиду малой интенсивности их можно не принимать во внимание.

Рассмотрим интерференцию лучей, отраженных от пластинки. Поскольку на пластинку падает плоская волна, то фронт этой волны представляет собой плоскость, перпендикулярную лучам 1 и 2. На рис. 2.11 прямая ВС представляет собой сечение волнового фронта плоскостью рисунка. Оптическая разность хода, приобретаемая лучами 1 и 2 до того, как они сойдутся в точке С, будет (2.13)

где   – длина отрезка ВС, а   – суммарная длина отрезков АО и ОС. Показатель преломления среды, окружающей пластинку, полагаем равным единице. Из рис. 2.11 видно, что  . Подстановка этих выражений в (2.13) дает  . Воспользуемся законом преломления света:  ; и учтем, что  , тогда для разности хода получим следующее выражение:  .

При вычислении разности фаз между колебаниями в лучах   и   нужно, кроме оптической разности хода Δ, учесть возможность изменения фазы при отражении в точке С. В точке С отражение волны происходит от границы раздела среды оптически менее плотной со средой оптически более плотной. Поэтому фаза волны претерпевает изменение на p. В точке   отражение происходит от границы раздела среды оптически более плотной со средой оптически менее плотной, и скачка фазы в этом случае не происходит. Качественно это можно представить себе следующим образом. Если толщину пластинки устремить к нулю, то полученная нами формула для оптической разности хода дает  . Поэтому при наложении лучей   и   должно происходить усиление колебаний. Но это невозможно, так как бесконечно тонкая пластинка вообще не может оказывать влияния на распространение света. Поэтому волны, отраженные от передней и задней поверхности пластинки, должны при интерференции гасить друг друга. Их фазы должны быть противоположны, то есть оптическая разность хода Δ при d→0 должна стремиться к  . Поэтому к прежнему выражению для Δ нужно прибавить или вычесть  , где λ0 – длина волны в вакууме. В результате получается:

. (2.14)

Итак, при падении на пластинку плоской волны образуются две отраженные волны, разность хода которых определяется формулой (2.14). Эти волны могут интерферировать, если оптическая разность хода не превышает длину когерентности. Последнее требование для солнечного излучения приводит к тому, что интерференция при освещении пластинки наблюдается только в том случае, если толщина пластинки не превышает нескольких сотых миллиметра.

Условие максимума: Δ = (2m+1)*λ/2.

7+ Полосы равной толщины и полосы равного наклона. Применение интерференции в технике.

СМОТРИ ВЫШЕ!

Если d = const, то наблюдаем полосы одинакового наклона.

Если φ1 = const, то наблюдаем полосы одинаковой толщины.

Применение интерференции света

Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны  . Поэтому это явление применяется для подтверждения волновой природы света и для измерения длин волн (интерференционная спектроскопия).

Явление интерференции применяется также для улучшения качества оптических приборов (просветление оптики) и получения высокоотражающих покрытий. Прохождение света через каждую преломляющую поверхность линзы, например через границу стекло - воздух, сопровождается отражением примерно 4% падающего потока (при показателе преломления стекла примерено 1,5%). Так как современные объективы содержат большое количество линз, то число отражений в них велико, а поэтому велики и потери светового потока. Таким образом, интенсивность прошедшего света ослабляется и светосила оптического прибора уменьшается. Кроме того, отражения от поверхностей линз приводят к возникновению бликов, что часто (например, в военной технике) демаскирует положение прибора.

Для устранения указанных недостатков осуществляют так называемое просветление оптики. Для этого на свободные поверхности линз наносят тонкие пленки с показателем преломления, меньшим, чем у материала линзы. При отражении света от границ раздела воздух - пленка и пленка - стекло возникает интерференция когерентных лучей 1' и 2' (рис. 4.5). Толщину пленки d и показатели преломления стекла nc и пленки n можно подобрать так, чтобы волны, отраженные от обеих поверхностей пленки, гасили друг друга. Для этого их амплитуды должны быть равны, а оптическая разность хода равна   (см. (3.8)). Расчет показывает, что амплитуды отраженных лучей равны, если

. (4.5)

Так как nc, n и показатель преломления воздуха n0 удовлетворяют условиям nc,>n>n0, то потеря полуволны происходит на обеих поверхностях; следовательно, условие минимума (предполагаем, что свет падает нормально, т. е. i=0)

,

где nd - оптическая толщина пленки. Обычно принимают m = 0, тогда

.

Таким образом, если выполняется условие (4.5) и оптическая толщина пленки равна , то в результате интерференции наблюдается гашение отраженных лучей. Так как добиться одновременного гашения для всех длин волн невозможно, то это обычно делается для наиболее восприимчивой глазом длины волны   мкм. Поэтому объективы с просветленной оптикой имеют синевато-красный оттенок.

8+ Дифракция. Принцип Гюйгенса-Френеля. Прямолинейное распространение света.

Дифракция света — явление огибания светом преграды или прохождения через узкое отверстие. Это частный случай прямолинейности распространения света. Наблюдается в среде с резкими неоднородностями. Свет отклоняется от прямолинейного распространения при прохождении его через малое отверстие или узкие щели (0,1—1,0 мм). В этом случае лучи света распространяются не только прямо, но и в стороны, отчего вокруг светлого кружка или светлой полосы появляется цветная кайма — дифракционные кольца или полосы.

Дифракция света — явление огибания светом препятствия вследствие интерференции вторичных волн от источников на краях препятствия. Условие дифракции: размеры препятствий должны быть меньше или равны размеру волн.

Принцип Гюйгенса – Френеля:

Принцип Гюйгенса — Френеля — основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности световых.

Принцип Гюйгенса — Френеля формулируется следующим образом:

Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Каждая точка пространства до которого дошла волна становится источником вторичных волн.

Закон прямолинейного распространения света : в прозрачной однородной среде свет распространяется по прямым линиям. В связи с законом прямолинейного распространения света появилось понятие световой луч, которое имеет геометрический смысл как линия, вдоль которой распространяется свет. Реальный физический смысл имеют световые пучки конечной ширины. Световой луч можно рассматривать как ось светового пучка. Поскольку свет, как и всякое излучение, переносит энергию, то можно говорить, что световой луч указывает направление переноса энергии световым пучком. Также закон прямолинейного распространения света позволяет объяснить, как возникают солнечные и лунные затмения.

9+ Дифракция света на круглом отверстии и круглом экране.

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени. Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос.

Дифракционные явления были хорошо известны еще во времена Ньютона, но объяснить их на основе корпускулярной теории света оказалось невозможным. Первое качественное объяснение явления дифракции на основе волновых представлений было дано английским ученым Т. Юнгом. Независимо от него в 1818 г. французский ученый О. Френель развил количественную теорию дифракционных явлений. В основу теории Френель положил принцип Гюйгенса, дополнив его идеей об интерференции вторичных волн. Принцип Гюйгенса в его первоначальном виде позволял находить только положения волновых фронтов в последующие моменты времени, т. е. определятьнаправление распространения волны. По существу, это был принцип геометрической оптики. Гипотезу Гюйгенса об огибающей вторичных волн Френель заменил физически ясным положением, согласно которому вторичные волны, приходя в точку наблюдения, интерферируют друг с другом. Принцип Гюйгенса–Френеля также представлял собой определенную гипотезу, но последующий опыт подтвердил ее справедливость. В ряде практически важных случаев решение дифракционных задач на основе этого принципа дает достаточно хороший результат. Рис. 3.8.1 иллюстрирует принцип Гюйгенса–Френеля.

Рисунок 3.8.1.

Принцип Гюйгенса–Френеля. ΔS1 и ΔS2 – элементы волнового фронта,   и   – нормали

Пусть поверхность S представляет собой положение волнового фронта в некоторый момент. В теории волн под волновым фронтом понимают поверхность, во всех точках которой колебания происходят с одним и тем же значением фазы (синфазно). В частности, волновые фронта плоской волны – это семейство параллельных плоскостей, перпендикулярных направлению распространения волны. Волновые фронта сферической волны, испускаемой точечным источником – это семейство концентрических сфер.

Для того чтобы определить колебания в некоторой точке P, вызванное волной, по Френелю нужно сначала определить колебания, вызываемые в этой точке отдельными вторичными волнами, приходящими в нее от всех элементов поверхности S (ΔS1, ΔS2 и т. д.), и затем сложить эти колебания с учетом их амплитуд и фаз. При этом следует учитывать только те элементы волновой поверхности S, которые не загораживаются каким-либо препятствием.

Рассмотрим в качестве примера простую дифракционную задачу о прохождении плоской монохроматической волны от удаленного источника через небольшое круглое отверстие радиуса R в непрозрачном экране (рис. 3.8.2).

Рисунок 3.8.2.

Дифракция плоской волны на экране с круглым отверстием

Точка наблюдения P находится на оси симметрии на расстоянии L от экрана. В соответствии с принципом Гюйгенса–Френеля следует мысленно заселить волновую поверхность, совпадающую с плоскостью отверстия, вторичными источниками, волны от которых достигают точки P. В результате интерференции вторичных волн в точке P возникает некоторое результирующее колебание, квадрат амплитуды которого (интенсивность) нужно определить при заданных значениях длины волны λ, амплитуды A0 падающей волны и геометрии задачи. Для облегчения расчета Френель предложил разбить волновую поверхность падающей волны в месте расположения препятствия на кольцевые зоны (зоны Френеля) по следующему правилу: расстояние от границ соседних зон до точки P должны отличается на половину длины волны, т. е. 

Если смотреть на волновую поверхность из точки P, то границы зон Френеля будут представлять собой концентрические окружности (рис. 3.8.3).

Рисунок 3.8.3.

Границы зон Френеля в плоскости отверстия

Из рис. 3.8.2 легко найти радиусы ρm зон Френеля: 

Так в оптике λ << L, вторым членом под корнем можно пренебречь. Количество зон Френеля, укладывающихся на отверстии, определяется его радиусом R

Здесь m – не обязательно целое число. Результат интерференции вторичных волн в точке P зависит от числа m открытых зон Френеля. Легко показать, что все зоны имеют одинаковую площадь: 

Одинаковые по площади зоны должны были бы возбуждать в точке наблюдения колебания с одинаковой амплитудой. Однако у каждой последующей зоны угол α между лучом, проведенным в точку наблюдения, и нормалью к волновой поверхности возрастает. Френель высказал предположение (подтвержденное экспериментом), что с увеличением угла α амплитуда колебаний уменьшается, хотя и незначительно: 

A1 > A2 > A3 > ... > A1,

где Am – амплитуда колебаний, вызванных m-й зоной.

С хорошим приближением можно считать, что амплитуда колебаний, вызываемых некоторой зоной, равна среднему арифметическому из амплитуд колебаний, вызываемых двумя соседними зонами, т. е. 

Так как расстояния от двух соседних зон до точки наблюдения отличаются на λ / 2, следовательно, возбуждаемые этими зонами колебания находится в противофазе. Поэтому волны от любых двух соседних зон почти гасят друг друга. Суммарная амплитуда в точке наблюдения есть

A = A1 – A2 + A3 – A4 + ... = A1 – (A2 – A3) – (A4 – A5) – ... < A1.

Таким образом, суммарная амплитуда колебаний в точке P всегда меньше амплитуды колебаний, которые вызвала бы одна первая зона Френеля. В частности, если бы были открыты все зоны Френеля, то до точки наблюдения дошла бы невозмущенная препятствием волна с амплитудой A0. В этом случае можно записать: 

так как выражения, стоящие в скобках, равны нулю. Следовательно, действие (амплитуда), вызванное всем волновым фронтом, равно половине действия одной первой зоны.

Итак, если отверстие в непрозрачном экране оставляет открытой только одну зону Френеля, то амплитуда колебаний в точке наблюдения возрастает в 2 раза (а интенсивность – в 4 раза) по сравнению с действием невозмущенной волны. Если открыть две зоны, то амплитуда колебаний обращается в нуль. Если изготовить непрозрачный экран, который оставлял бы открытыми только несколько нечетных (или только несколько четных) зон, то амплитуда колебаний резко возрастет. Например, если открыты 1, 3 и 5 зоны, то 

A = 6A0I = 36I0.

Такие пластинки, обладающие свойством фокусировать свет, называются зонными пластинками.

При дифракции света на круглом диске закрытыми оказываются зоны Френеля первых номеров от 1 до m. Тогда амплитуда колебаний в точке наблюдения будет равна 

или A = Am + 1 / 2, так как выражения, стоящие в скобках, равны нулю. Если диск закрывает зоны не слишком больших номеров, тоAm + 1 ≈ 2A0 и A ≈ A0, т. е. в центре картины при дифракции света на диске наблюдается интерференционный максимум. Это – так называемое пятно Пуассона, оно окружено светлыми и темными дифракционными кольцами.

Оценим размеры зон Френеля. Пусть, например, дифракционная картина наблюдается на экране, расположенном на расстоянии L = 1 м от препятствия. Длина волны света λ = 600 нм (красный свет). Тогда радиус первой зоны Френеля есть 

Таким образом, в оптическом диапазоне вследствие малости длины волны размер зон Френеля оказывается достаточно малым. Дифракционные явления проявляются наиболее отчетливо, когда на препятствии укладывается лишь небольшое число зон: 

Это соотношение можно рассматривать как критерий наблюдения дифракции. Если число зон Френеля, укладывающихся на препятствии, становится очень большим, дифракционные явления практически незаметны: 

Это сильное неравенство определяет границу применимости геометрической оптики. Узкий пучок света, который в геометрической оптике называется лучом, может быть сформирован только при выполнении этого условия. Таким образом, геометрическая оптика является предельным случаем волновой оптики.

Выше был рассмотрен случай дифракции света от удаленного источника на препятствиях круглой формы. Если точечный источник света находится на конечном расстоянии, то на препятствие падает сферически расходящаяся волна. В этом случае геометрия задачи несколько усложняется, так как теперь зоны Френеля нужно строить не на плоской, а на сферической поверхности (рис. 3.8.4).

Рисунок 3.8.4.

Зоны Френеля на сферическом фронте волны

Расчет приводит к следующему выражению для радиусов ρm зон Френеля на сферическом фронте волны: 

Все выводы изложенной выше теории Френеля остаются справедливыми и в этом случае.

Следует отметить, что теория дифракции (и интерференции) световых волн применима к волнам любой физической природы. В этом проявляется общность волновых закономерностей. Физическая природа света в начале XIX века, когда Т. Юнг, О. Френель и другие ученые развивали волновые представления, еще не была известна.

10+ Дифракция света в параллельных лучах на щели. Дифракционная решётка.

Дифракция Фраунгофера — случай дифракции, при котором дифракционная картина наблюдается на значительном расстоянии от отверстия или преграды.