
Решение
Используя метод бальных оценок заполним таблицу.
Фактор |
Вес |
А |
В |
Вес × А |
Вес × В |
Удобство пользования |
0,5 |
6 |
4 |
3 |
2 |
Дизайн |
0,3 |
5 |
5 |
1,5 |
1,5 |
Упаковка |
0,2 |
3 |
7 |
0,6 |
1,4 |
Сумма |
1 |
— |
— |
5,1 |
4,9 |
Поясним, как заполняется таблица. Числа 2-го столбца умножаем на числа 3-го (4-го) столбца соответственно и результат пишем в 5-м (6-м) столбце. В последней строке указана сумма чисел соответствующего столбца.
Средняя экспертная оценка равна (5,1 + 4,9)/2 = 5.
Тогда средняя рыночная цена одного балла = (средняя рыночная цена товара)/(средняя экспертная оценка) = 50/5 = 10.
Отсюда отпускная цена модели А = 5,1×10 = 51 руб., а отпускная цена модели В — 4,9×10 = 49 руб.
Ответ:
1. отпускная цена модели А равна 51 руб./ед.
2. отпускная цена модели В равна 49 руб./ед.
Задача 12
Перед менеджером стоит задача - сколько необходимо заказать товара на предстоящий сезон при следующих условиях.
* Если заказывать Х1 ед. товара расходы составят Р1 $/ед.
* Если заказывать Х2 (вдвое меньше) ед. товара расходы составят Р2 $/ед.
* В течение всего сезона товар будет продаваться по цене Ц1 $/ед.
* Не проданный в течение предстоящего сезона товар будет уценён и реализован на распродаже по цене Ц2 (уценка 50 %) $/ед.
* Спрос на данный товар в предстоящем сезоне не известен. Вероятность величины спроса равного Х1 ед. товара и Х2 ед. товара равны. Т.е. при равновероятностном условии вероятность продажи Х ед. товара равна 50 % и вероятность продажи Х2 ед. товара равна 50 %,
Необходимо определить максимально возможную цену, которую может заплатить менеджер, если он способен рисковать, за точную информацию о том, какой будет спрос на данный товар в предстоящем сезоне (для этого необходимо рассчитать математическое ожидание в предстоящем сезоне)?
Данные:
Х1= 750, Х2 = 375, 31= 600, 32= 430, Ц1= 1200, Ц2= 600
Решение
1. Определить величину ожидаемой прибыли, которая может быть при спросе равном Х1 ед. товара за сезон и при спросе Х2 ед. товара за сезон для каждого из возможных случаев величины заказанной менеджером партии товара (по формулам).
1.1. Прибыль
Пр=(Цпр.- З1) × Qпр + (Цраспр.- З2) × Qраспр,
где Ц1, Ц2 - цена продажи, цена распродажи (с уценкой);
З - затраты;
Q1, Q2. - объём продаж и распродажи соответственно.
Для выбора оптимального варианта заказа необходимо произвести 4 варианта расчёта, т.к. есть 2 варианта спроса и 2 варианта количества заказа.
спрос Х1:
Закуплено Х1 единиц товара:
Пр = (Ц1 - Р1) × Х1 = (1200 - 600) × 750 = 450 000
Закуплено Х2 единиц товара:
Пр =(Ц1 - Р2) × Х2 = (1200 - 430) × 375 = 288 750
спрос Х2:
Закуплено Х1 единиц товара:
Пр = (Ц1 - Р1) × Х2 + [(Ц2 - Р1) × (Х1-Х2)] = (1200 - 600) × 375 + (600 - 600) × 375 = 225 000
Закуплено Х2 единиц товара:
Пр = (Ц1 - Р2) × Х2 + 0 = (1200 - 430) × 375 = 288 750
1.2. Вероятностная ожидаемая прибыль:
Пр1 × W% + Пр2× W% ,
где Пр1, Пр2 - прибыль при спросе Х1 и Х2 соответственно;
W% - вероятность спроса, %
Получится 2 варианта расчёта, т.к. у нас 2 вероятных величины спроса
заказ Х1:
450 000 × 50 % + 225 000 × 50 % = 225 000 + 112 500 = 337 500
заказ Х2:
288 750 × 50 % + 288 750 × 50 % = 288 750
2. Определим математическое ожидание прибыли в предстоящем сезоне.
М(Пр) = Пр1 × 0,5 + Пр2 × 0,5 = 337 500 × 0,5 + 288 750 × 0,5 = 313 125
3. С учётом величины “математического ожидания прибыли в предстоящем сезоне” и величины “вероятностная ожидаемая прибыль” А (выбрать “ближние” величины), с учётом “максимальной прибыли” Б (из 4 вариантов), определить “максимальную цену за точную информацию” (Б минус А):
Цmax = 450 000 - 337 500 = 112 500
Ответ: максимальная цена за точную информацию равна 112500 ед.