
- •1.Энергосистема и её структура
- •2.Классификация электрических сетей
- •3.Основные элементы воздушных линий
- •4. Провода воздушных линий
- •5.Опоры воздушных линий и их основания
- •6. Изоляторы и линейная арматура вл
- •7. Кабельные линии электропередач. Общая характеристика.
- •8. Кабельные линии 1-35 кВ
- •9. Кабельная арматура
- •10. Режимы нейтралей электрических сетей. Эс наприжением до 1 кВ (вода …)
- •11.Сети с незаземленной (изолированной) нейтралью
- •12.Сети с компенсированными ( резонансно - заземленными) нейтралями
- •13. Сети с эффективно и глухо заземленными нейтралями
- •14. Общая характеристика схем замещения воздушных и кабельных линий электропередач
- •16. Воздушная лэп с расщепленными фазами
- •17. Моделирование протяженных линий
- •Параметры и схема замещения двухобмоточногоо трансформатора
- •Параметры и схема замещения трехобмоточного трансформатора
- •Параметры и схема замещения автотрансформатора
- •Параметры и схема замещения трансформатора расщ. Обмотками
- •22.Годовые графики нагрузок
- •23Статические характеристики электрических нагрузок
- •24. Моделирование нагрузок постоянным по модулю и фазе током
- •25. Задание нагрузки неизменной мощности Нагрузка задается постоянной по величине мощностью
- •При расчетах установившихся режимов питающих и иногда распределительных сетей высокого напряжения (см. Рис. 2.17,б).
- •27. Общая характеристика задачи расчета и анализа установившихся режимов электрических сетей
- •45 Расчет установившегося режима разомкнутой электрической сети
- •37.Расчет сети методом уравнений контурных токов.
- •38. Расчет сети методом уравнений контурных мощностей.
- •39. Методы расчета и анализа потерь электроэнергии. Метод характерных суточных режимов.
- •40.Определение потерь электроэнергии методом средних нагрузок.
- •41. Определение потерь электроэнергии методом среднеквадратичных параметров режима
- •42. Определение потерь электроэнергии методом времени наибольших потерь.
- •43. Определение потерь электроэнергии методом раздельрого времени наибольших потерь.
- •44. Определение потерь электроэнергии методом эквивалентного сопротивления.
- •45. Подходы к регулированию напряжения в системообразующей эс
- •46. Принципы регулирования напряжения в центрах питания распределительных эс.
- •48. Регулирование напряжения изменением потоков реактивной мощности.
- •50. Выбор конфигурации и номинального напряжения.
- •51. Выбор проводников по условиям экономичности.
- •52. Выбор проводников лэп по допустимой потере напряжения.
- •53. Выбор проводников лэп по условию нагрева.
- •54. Учет технических ограничений при выборе проводов вл и жил кл.
- •55. Пути повышения пропускной способности лэп и эс.
6. Изоляторы и линейная арматура вл
Линейные изоляторы предназначены для изоляции и крепления проводов на ВЛ и в распределительных устройствах электрических станций и подстанций. Изготавливаются они из фарфора или закаленного стекла. По конструкции изоляторы разделяют на штыревые и подвесные.
Штыревые изоляторы применяются на ВЛ напряжением до 1 кВ и на ВЛ 6-35 кВ (35 кВ - редко и только для проводов малых сечений). На номинальное напряжение 6-10 кВ и ниже изоляторы изготавливают одноэлементными (рис. 1.13, а), а на 20-35 кВ - двухэлементными (рис.
Рис. 1.13. штыревые и подвесные изоляторы:
а –штыревой 6-10 кВ, б – штыревой 20-35 кВ, в – подвесной тарельчатого типа
1.13, б). В условном обозначении изолятора буква и цифры обозначают: Ш – штыревой; Ф (С)–фарфоровый (стеклянный); цифра–номинальное напряжение, кВ; последняя буква А, Б, В – исполнение изолятора.
Подвесной изолятор тарельчатого типа наиболее распространен на ВЛ напряжением 35 кВ и выше. Подвесные изоляторы (рис. 1.13, в) состоят из фарфоровой или стеклянной изолирующей части и металлических деталей – шапки 2 и стержня 3, соединяемых с изолирующей частью посредством цементной связки 4. На рис. 1.13,в показан фарфоровый изолятор нормального исполнения. Для ВЛ в районах с загрязненной атмосферой разработаны конструкции изоляторов грязестойкого исполнения с повышенными разрядными характеристиками и увеличенной длиной пути утечки. В условном обозначении изолятора буквы и цифры означают: П–подвесной; Ф (С)–фарфоровый (стеклянный); Г–для загрязненных районов; цифра– класс1 изолятора, кН; А, Б, В–исполнение изолятора.
Подвесные изоляторы собирают в гирлянды (рис. 1.14, а, б), которые бывают поддерживающими и натяжны- ми. Первые монтируют на промежуточных опорах, вторые–на анкерных. Число изоляторов в гирлянде зависит от напряжения линии. Например, в поддерживающих гирляндах ВЛ с металлическими и железобетонными опрами 35 кВ должно быть 3 изолятора; 110 кВ–6–8, 220 кВ– 10-14 и т. д. [12].
Линейная арматура, применяемая для крепления проводов к изоляторам и изоляторов к опорам, делится на следующие основные виды: зажимы, применяемые для закрепления проводов в гирляндах подвесных изоляторов; сцепную арматуру для подвески гирлянд на опорах и соединения многоцепных гирлянд друг с другом, а также соединители для соединения проводов и тросов в пролете.
Сцепная арматура включает скобы, серьги и ушки.
Зажимы для закрепления проводов и тросов в гирляндах подвесных изоляторов подразделяются на поддерживающие, подвешиваемые на промежуточных опорах, и на тяжные, применяемые на опорах анкерного типа. По прочности закрепления провода поддерживающие зажимы подразделяются на глухие и с заделкой ограниченной прочности.
Промышленность выпускает провода кусками определенной длины. На ВЛ эти куски проводов соединяют друг с другом с помощью соединителей, подразделяемых на овальные и прессуемые.
Овальные соединители (рис. 1.14,е,ж) применяются для проводов сечением до 185 мм2 включительно. В них провода укладываются внахлест, после чего производится обжатие соединителя с помощью специальных клещей (рис. 1.14,е). Сталеалюминиевые провода сечением до 95 мм2 включительно закрепляются в соединителях мето- дом скручивания (рис. 1.14, ж).
Прессуемые соединители используются для соединения проводов сечением 240 мм2 и более и стальных тросов всех сечений. Для сталеалюминиевых проводов эти зажимы состоят из двух трубок: одной–стальной, предназначенной для соединения внутренних стальных жил, и другой – алюминиевой, накладываемой поверх первой и служащей для соединения наружных алюминиевых жил (рис. 1.14, з).
К проводам ВЛ вблизи от зажимов подвешиваются гасители вибрации с грузами или демпфирующие петли, применение которых уменьшает вибрацию и позволяет предотвратить излом проволок провода (см. § 8.7). Для алюминиевых и сталеалюминиевых проводов малых сечений защита от вибраций осуществляется с помощью демпфирующей петли 1 из провода той же марки. На проводах ВЛ 330–750 кВ применяются распорки 1 (рис. 1.14, л) для фиксации проводов расщепленной фазы 2 относительно друг друга. Эти распорки обеспечивают требуемое расстояние между отдельными проводами фазы и предохраняют их от схлестывания, соударения и закручивания.