
- •1 Трибология и триботехника. Основные термины и определения.
- •2. Характеристика износа
- •3 Виды изнашивания
- •4. Закономерности изнашивания деталей, образующих пары трения, и пути уменьшения износа.
- •5 Совместимость трущейся пары
- •1. Использование защитных свойств оксидных пленок.
- •2. Подбор материалов пары трения.
- •6 Разделение поверхностей трения защитными пленками
- •7 Принципы подбора материалов пары трения
- •8 Классификация износостойких материалов
- •9 Износостойкие конструкционные стали.
- •10 Понятие об антифрикционных материалах.
- •11. Классификация антифрикционных материалов.
- •12. Металлические антифрикционные материалы
- •13. Антифрикционные материалы на основе железа.
- •14. Антифрикционные материалы на основе меды.
- •15. Антифрикционные материалы с твердыми смазками.
- •16. Сплавы с мягкой матрицей и твердыми включениями (баббиты, бронзы, латуни).
- •17. Сплавы с твердой матрицей и мягкими включениями
- •18. Антифрикционные порошковые материалы.
- •19. Самосмазывающиеся спеченные антифрикционные материалы
- •20. Материалы с твердым смазочным материалом.
- •21. Неметаллические антифрикционные материалы
- •22. Металлополимерные антифрикционные материалы
- •23. Антифрикционные минералы
- •24. Фрикционные материалы. Термины и определения.
- •25. Порошковые фрикционные материалы на основе железа.
- •26. Порошковые фрикционные материалы на основе меди.
- •27. Методы измерения силы трения.
- •28. Методики и средства триботехнических испытаний.
- •29. Особенности строения и свойств композиционных материалов.
- •30. Принципы создания композиционных материалов.
- •31. Классификация композиционных материалов.
- •32. Композиционные материалы на полимерной матрице.
- •33. Наполненные пластики
- •34. Армированные волокнистые пластики
- •35.Слоистые армированные пластики
- •36. Композиционные материалы на металлической матрице
- •37. Дисперсно-упрочненные материалы на металлической матрице.
- •38. Композиционные металлические материалы, формируемые спеканием.
- •39. Эвтектические композиционные металлические материалы.
- •40. Волокнистые композиционные металлические материалы.
- •Композиционные материалы на керамической матрице.
- •Классификация керамических композиционных материалов.
- •43 Дисперсные керамические композиционные материалы.
- •44 Армированные керамические композиционные материалы.
- •Эвтектические керамические композиционные материалы.
- •Слоистые керамические композиционные материалы.
- •Получение композиционных материалов методом контактного формования и напыления.
- •50 Формование композиционных материалов с помощью эластичной диафрагмы.
- •51.Формование стеклопластиков методами прессования и пропитка наполнителя в замкнутой форме.
- •Получение полых изделий и труб методом намотки.
- •53. Технология получения композиционных материалов твердофазными методами.
- •54.Технология изготовления дисперсно-упрочненных композиционных материалов.
- •55. Горячее прессование порошков в металлических пресс-формах.
- •56. Гидростатическое прессование порошков
- •57. Горячая прокатка и ковка порошков.
- •58. Технология изготовления слоистых композиционных материалов.
26. Порошковые фрикционные материалы на основе меди.
Фрикционные материалы (пористость 10…13 %) предназначены для работы в муфтах сцепления и тормозах. Условия работы могут быть очень тяжелыми: трущиеся поверхности мгновенно нагреваются до 1200oС, а материал в объеме – до 500…600oС. Коэффициент трения при работе в масле – 0,08…0,15, при сухом трении – до 0,7.
Примерный состав сплава: медь – 60…70 %, олово – 7 %, свинец – 5 %, цинк – 5…10%, железо – 5…10 %, кремнезем или карбид кремния – 2…3 %, графит – 1…2 %.
Из фрикционных материалов изготавливают тормозные накладки и диски. Так как прочность этих материалов мала, то их прикрепляют к стальной основе в процессе изготовления (припекают к основе) или после (приклепывают, приклеивают и т.д.).
Фрикционные материалы представляют собой сложные композиции на медной или железной основе. Коэффициент трения можно повысить добавкой асбеста, карбидов тугоплавких металлов и различных окислов. Для уменьшения износа в композиции вводят графит или свинец. Фрикционные материалы обычно применяют в виде биметаллических элементов, состоящих из фрикционного слоя, спеченного под давлением с основой (лентой или диском).
Фрикционные изделия должны иметь высокий коэффициент трения, достаточную механическую прочность и хорошее сопротивление износу. Для повышения коэффициента трения в состав фрикционных материалов вводят карбиды кремния, бора, тугоплавкие оксиды и т.д. Компонентами твердого смазочного материала служат графит, свинец, сульфиды и др.
Фрикционные сплавы на медной основе применяют для условий жидкостного трения в паре с закаленными стальными деталями (сегменты, диски сцепления и т.д.) при давлении до 400 МПа и скорости скольжения до 40 м/с с максимальной температурой 300–350°С. Типичным фрикционным материалом на основе меди является сплав МК5, содержащий 4% Fe, 7% графита, 8% Рb, 9% Sn, 0–2% Ni.
27. Методы измерения силы трения.
Методы, реализация которых предусматривает применение механических датчиков
Принципиальная схема измерения сил трения с помощью динамометров показана на рис.1.
Измерение
силы терния с помощью торсиона определяют
по углу закручивания упругого элемента
(рис.2).
С
хема
измерения силы трения с помощью датчика
маятникового типа (рис. 3)
Методы, основанные на преобразовании деформации (перемещения) упругого элемента, в электрический сигнал
В данном случае перемещение или деформация упругого элемента может фиксироваться тензометрическим, пьезоэлектрическим или индуктивным датчиком.Наиболее распространен тензометрический метод измерения силы трения (машины типа МПТ-1, МДП-1) (Рис. 4).
Схема измерения силы трения тензометрическимметодом
М
етод,
основанный на регистрации рабочих
характеристик ведущего электродвигателя
постоянного тока.О
моменте трения судят по изменению
величины тока при постоянном напряжении,
требуемого для достижения заданной
скорости вращения вала.Метод свободных
колебаний маятника:Этот метод применяется
для определения коэффициента трения
качения. Шарик маятника, закручивая
нить, катится по наклонной поверхности
(рис. 5,а). По затуханию колебаний судят
о коэффициенте трения качения. Нагрузку
изменяют, задавая угол наклона плоскости
.
По затуханию колебаний маятника (рис.
5, б) определяют также коэффициент трения
в подшипнике скольжения (качения).