Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
скомпанованная прикладная.docx
Скачиваний:
3
Добавлен:
23.09.2019
Размер:
365.77 Кб
Скачать

6.Каковы методы выбора допускаемых напряжений и запасов прочности.

Существуют два главных направления выбора напряжений и запасов прочности.Первое направление (в значительной мере устаревшее) заключается в предварительном выборе запаса прочности, установлении допустимых напряжений на основании этого запаса и определении сечений и моментов инерции деталей по формулам сопротивления материалов и теории упругости с учетом главных нагрузок на расчетном режиме (обычно режим максимальной мощности или частоты вращения).Метод применяют и в обратной последовательности : сначала ориентировочно назначают размеры деталей, затем делают проверочный расчет, определяя действующие в опасных сечениях напряжения, и в заключение находят запас прочности. Если последний соответствует установившимся традиционным величинам, то расчет считают законченным, если нет, то размеры деталей корректируют.В данном методе все факторы, обусловливающие отклонения истинных напряжений от расчетных, суммарно входят в запас прочности, который вследствие этого приобретает большое числовое значение.Второе, современное направление стремится к полному и точному выяснению фактических напряжений, действующих в детали. В помощь аналитическому определению напряжений привлекают экспериментальные методы. Сочетание аналитических и экспериментальных методов позволяет более точно установить распределение напряжений. По мере совершенствования и уточнения расчетных методов число неизвестных факторов уменьшается, а число определяемых увеличивается.В числе неопределимых факторов остаются внутренние напряжения, вызываемые макро-и микродефектами структуры, а также напряжения, возникающие из-за Неточностей изготовления и монтажа. Эти факторы необходимо учитывать при установлении запаса прочности.Кроме того, в запасе прочности должна быть отражена степень ответственности детали и возможные последствия ее поломки. Если поломка детали сопряжена с опасностью аварии и выхода из строя машины, то запас прочности увеличивают.Метод уточнения напряжений и выделения в запас прочности только немногих случайных и не поддающихся учету факторов является наиболее правильным. Естественно, при уточненной методике расчета запас прочности снижается (в среднем до 1,5—3). Однако точные методы расчета выработаны пока для ограниченных случаев нагружения и типовдеталей.Третье, промежуточное направление пытается восполнить пробелы современных методов расчета перенесением неизвестных величин в запас прочности, но только в дифференцированном виде.Запас прочности представляют как произведение частных коэффициентов, каждый из которых отражает одну из неопределенностей расчета. Некоторые исследователи проводят дифференциацию еще дальше, представляя запас прочности как произведение многих (до десяти и более) частных коэффициентов, охватывающих все или почти все факторы неопределенности, перечисленные выше. Затем дают рецепты по выбору численных значений каждого из них в зависимости от степени достоверности расчета, качества изготовления, сложности формы деталей и т. д.Эта система мало отличается от старой системы валового запаса прочности. Если раньше конструктор допускал одну крупную ошибку при выборе запаса прочности, то при дифференцированной системе он может допустить несколько мелких ошибок, накладывающихся одна на другую.При этом метоле оценка факторов неопределенности является условной. Численная оценка этого фактора по сути предполагает существование точного расчета, позволяющего определить истинные напряжения. Но тогда нет необходимости в поправочном коэффициенте, а достаточно ввести в расчет эти напряжения.Кроме того, численные значения поправочных коэффициентов столь разнородных категорий, как, например, точности расчета и совершенства технологии изготовления, принципиально несопоставимы.

БИЛЕТ № 7.

КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ Конструкционными материалами называют материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами Конструкционные материалы являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества Конструкционные материалы относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др. Конструкционные материалы подразделяются: по природе материалов — на металлические, неметаллические и композиционные материалы, сочетающие положительные свойства тех и других материалов; по технологическому исполнению — на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т.п.); по условиям работы — на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т.д.; по критериям прочности — на материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности. Развитие техники предъявляет новые, более высокие требования к существующим Конструкционным материалам, стимулирует создание новых материалов. С целью уменьшения массы конструкций летательных аппаратов используются, например, многослойные конструкции, сочетающие в себе лёгкость, жёсткость и прочность. Внешнее армирование металлических замкнутых объёмов (шары, баллоны, цилиндры) стеклопластиком позволяет значительно снизить их массу в сравнении с металлическими конструкциями. Для многих областей техники необходимы Конструкционные материалы, сочетающие конструкционную прочность с высокими электрическими, теплозащитными, оптическими и другими свойствами. В составе конструкционных материалов нашли своё применение почти все элементы таблицы Менделеева, а эффективность ставших уже классическими для металлических сплавов методов упрочнения путём сочетания специально подобранного легирования, высококачественной плавки и надлежащей термической обработки снижается, перспективы повышения свойств конструкционных материалов связаны с синтезированием материалов из элементов, имеющих предельные значения свойств.

Чугуны Это сплавы железа с углеродом, содержащие постоянные примеси марганца, кремния, фосфора и серы, а также при необходимости легирующие элементы. В зависимости от структуры и состояния,в котором находится углерод (свободный или химически связанный),различают серые, белые и ковкие чугуны.Чугуны также классифицируют в зависимости от назначения– на конструкционные и со специальными свойствами;и от химсостава– на легированные и нелегированные. Как конструкционный материал наиболее широко применяются серые чугуны,в которых весь углерод находится в свободном состоянии в виде включений графита пластинчатой формы. Они обладают средней прочностью,хорошими литейными и другими технологическими свойствами(жидкотекучестью,малой линейной усадкой, обрабатываемостью резанием), мало чувствительны к концентрации переменных напряжений,антифрикционны. В белых чугунах избыточный углерод, не растворившийся в твердом растворе железа, присутствует в виде карбидов железа. Вследствие низких механических свойств – высокой хрупкости и твердости,плохой обрабатываемости резанием –белые чугуны не применяются в качестве конструкционных материалов. Ковкий чугун получают из белого путем последующего отжига до распада графита в виде хлопьев. Детали из него могут подвергаться незначительным деформациям.Они обладают меньшей по сравнению с деталями из серого чугуна хрупкостью,но стоят на 30… 100% дороже. Высокопрочный чугун характеризуется шаровидной или близкой к ней формой включений графита, которую получают модифицированием жидкого чугуна присадками магния. Шаровидный графит в наименьшей мере ослабляет металлическую основу, что приводит к высоким механическим свойствам.Высокопрочный чугун обладает хорошими литейными и эксплуатационными свойствами. Для улучшения прочностных характеристик и получения особых эксплуатационных свойств: износостойкости,немагнитности,коррозионной стойкости и т.д., в состав чугунов вводят легирующие элементы (никель,хром, медь, алюминий,титан и др.).Легирующими элементами могут служить также марганец(при содержании более 2%) и кремний(более 4%). Марки чугуна обозначаются буквами, показывающими назначение чугуна: СЧ –серый чугун,ВЧ – высокопрочный,КЧ – ковкий чугун; для антифрикционных чугунов в начале марки указывается буква А (АСЧ,АВЧ, АКЧ). Цифры в обозначении марки нелегированного чугуна указывают на его механические свойства. Для серых чугунов цифры указывают величину предела прочности(кгс/мм2) при растяжении.Например, марка СЧ18 показывает,что чугун имеетσut = 18 кгс/мм2 = 180 МПа.Для высокопрочного и ковкого чугуна цифры определяют предел прочности(кгс/мм2) и относительное удлинение при растяжении в процентах,например ВЧ60-2– высокопрочный чугун с σut = = 600МПа и δ= 2%.

Стали Стали – это деформируемые сплавы железа с углеродом и другими элементами. По хим.составу стали делят на углеродистые и легированные.Углеродистые стали содержат кроме железа и углерода также марганец(до 1%) и кремний до (0,8%), а также примеси, от которых трудно избавиться в процессе выплавки – серу и фосфор. Сера и фосфор снижают механические свойства сталей:сера увеличивает хрупкость в горячем состоянии(красноломкость),а фосфор – при пониженных температурах(хладноломкость).В зависимости от содержания углерода различают низко- (С ≤ 0,25%), средне-(0,25 < С ≤ 0,6%) и высокоуглеродистые(C > 0,6%) стали. В состав легированных сталей помимо указанных компонентов для улучшения технологических и эксплуатационных характеристик и придания особых свойств вводят легирующие элементы (хром,никель, молибден,вольфрам, ванадий,титан, ниобий и др.). Легирующими элементами могут быть также марганец при содержании более 1% и кремний– более 0,8%. По назначению стали делят на конструкционные,инструментальные и с особыми свойствами.Наиболее широко применяют конструкционные стали. Они бывают как углеродистыми(С ≤ 0,7%), так и легированными.Инструментальные стали служат для изготовления режущего,ударно-штампового и мерительного инструментов.Они бывают углеродистыми (С ≥ 0,8 … 1,3%) и легированные хромом, марганцем,кремнием и другими элементами.К сталям с особыми свойствами относят нержавеющие,немагнитные,электротехнические стали, стали постоянных магнитов и др. По качеству стали делят на обыкновенные,качественные,высоко и особо высококачественные.Различие между ними заключается в количестве вредных (сера и фосфор) примесей.Так, в сталях обыкновенного качества допускается содержание серы до 0,06% и фосфора до 0,07%; в качественных– каждого элемента не более 0,035%; а в высококачественных– не более 0,025%. По характеру застывания из жидкого состояния, степени раскисления различают спокойную, полуспокойную и кипящую стали. Чем полнее удален из расплава кислород, тем спокойнее протекает процесс затвердевания и меньше выделение пузырьков окиси углерода («кипение»).Выбор технологии раскисления определяется назначением и возможностями производства, но каждый способ имеет свои достоинства и недостатки. Марки углеродистой стали обыкновенного качества обозначаются буквами Ст (сталь) и цифрами от 0 до 6, например Ст0 – Ст6. Цифры соответствуют условному номеру марки в зависимости от химического состава и механических свойств. Чем больше число, тем больше содержание углерода в стали, выше прочность и ниже пластичность. Эти стали делят на три группы– А, Б и В. Сталь группы А имеет гарантированные механические свойства и не подвергается термообработке, в марке стали группа А не указывается. Для стали группы Б гарантируется химический состав, для стали группы В – химический состав и механические свойства. Степень раскисления обозначается индексами,стоящим справа от номера марки:кп – кипящая,пс – полуспокойная,сп – спокойная.Например, сталь Ст2кп – сталь группы А, кипящая;БСт3пс – сталь группы Б, полуспокойная;ВСт5сп – сталь группы В, спокойная. Углеродистые качественные стали маркируются двузначными цифрами (08, 10, 15, …,70), показывающими среднее содержание углерода в стали в сотых долях процента.Эти стали можно условно разделить на несколько групп. Стали08, 10 обладают высокой пластичностью,хорошо штампуются и свариваются.Низкоуглеродистые стали 15, 20, 25 хорошо свариваются и обрабатываются резанием, после цементации и термообработки обладают повышенной износостойкостью.Наибольшее распространение получили среднеуглеродистые стали 30, 35, 40, 45 и 50благодаря хорошему сочетанию прочностных и пластических свойств, хорошей обрабатываемости резанием.Высокоуглеродистые стали 60, 65, 70 обладают высокой прочностью,износостойкостью и упругостью,используются для изготовления деталей типа пружин. Прочность и твердость средне- и высокоуглеродистых сталей можно повысить с помощью термической обработки. Углеродистые инструментальные стали маркируют буквой У и цифрами, которые соответствуют содержанию углерода в десятых долях процента, например, сталь марки У9 содержит в среднем 0,9% углерода. Легированными называют стали, в состав которых для придания им специальных свойств вводят легирующие элементы. Они по-разному влияют на свойства стали: марганец повышает прочность и износостойкость; кремний увеличивает упругие характеристики стали; хромповышает коррозионную стойкость, твердость, прочность, жаропрочность; никель снижает коэффициент линейного расширения, повышает прочность и износостойкость; вольфрам и молибден повышают прочность и твердость, улучшают режущие свойства при повышенной температуре. Маркируют легированные стали буквами и цифрами, указывающими ее химический состав. Первые цифры марок перед буквами указывают содержание углерода для конструкционных сталей в сотых долях процента(две цифры), а для инструментальных и специальных сталей – в десятых долях. Далее обозначение состоит из букв, указывающих, какие легирующие элементы входят в состав стали, и стоящих непосредственно за каждой буквой цифр, характеризующих среднее содержание легирующего элемента в процентах.Цифры за буквой не ставятся при содержании легирующего элемента менее1,5%. Легирующие элементы обозначаются следующими буквами: Т –титан, С – кремний,Г – марганец,Х – хром, Н – никель, М – молибден,В – вольфрам и т.п. Например,нержавеющая сталь Х18Н10Т содержит 18% хрома,10% никеля и до1,5% титана; конструкционная легированная сталь 30ХГС содержит0,30% углерода, а хрома, марганца и кремния до1,5% каждого;инструментальная легированная сталь 9ХС содержит0,9% углерода, а хрома и кремния до 1,5% каждого.В сталях 30ХГС и 9ХС кремния больше 0,8%, марганца в стали 30ХГС больше 1%. Обозначения марок некоторых специальных сталей включают впереди букву,указывающую на назначение стали. Например,буква Ш –шарикоподшипниковая сталь (ШХ15 – с содержанием хрома ≈ 1,5%), Э –электротехническая и т.д. Обладая хорошими механическими характеристиками,стали являются наиболее распространенным конструкционным материалом.Существенный их недостаток– большая плотность и, как следствие,небольшая удельная прочность и удельная жесткость.Стали обладают также малой коррозийной стойкостью,а применение нержавеющих сталей для подобных целей дорого.

БИЛЕТ № 8. Легкие сплавы.

Современная промышленность нуждается в легких сплавах высокой прочности, обладающих хорошими высокотемпературными механическими свойствами. Основными металлами легких сплавов служат алюминий, магний, титан и бериллий. Однако сплавы на основе алюминия и магния не могут применяться в условиях высокой температуры и в агрессивных средах.

Алюминиевые сплавы, сплавы на основе алюминия. Первые А. с. получены в 50-х гг. 19 в.; они представляли собой сплав алюминия с кремнием и характеризовались невысокими прочностью и коррозионной стойкостью.

Магниевые сплавы, сплавы на основе магния. Наиболее прочные, в том числе и наиболее жаропрочные, М. с. разработаны на основе систем магний — металл с ограниченной растворимостью в твёрдом магнии. Вследствие высокой химической активности магния выбор металлов, пригодных для легирования М. с., сравнительно невелик. М. с. разделяются на 2 основные группы: литейные — для производства фасонных отливок и деформируемые — для производства полуфабрикатов прессованием, прокаткой, ковкой и штамповкой. Историческая справка. Первые М. с. появились в начале 20 века (под названием "электрон", теперь мало употребляемым). Значение конструкционных промышленных материалов М. с. приобрели в конце 20-х — начале 30-х годов 20 века, то есть почти через 100 лет после того как французский химик А. Бюсси впервые выделил магний в чистом виде (1828). До конца 40-х годов применялись главным образом сплавы на основе систем Mg — Al — Zn и Mg — Mn. Дальнейшему прогрессу в области создания М. с. способствовало открытие модифицирующего и рафинирующего действия циркония. В 50-х годах начали применяться сплавы на основе систем Mg — Zn — Zr, Mg — p. з. м. (редкоземельный металл) — Zr (или Mn), Mg — Th, а также сверхлёгкие сплавы на основе системы Mg — Li. Производство и потребление магния и М. с. возрастает. Мировое производство магния к началу 2-й мировой войны 1939—45 составило около 50 тысяч т, в 1969 ~ 2 млн. т, из них ~ 40—50% расходуется на производство отливок и деформированных полуфабрикатов. Титановые сплавы, сплавы на основе титана. Лёгкость, высокая прочность в интервале температур от криогенных (-250 °С) до умеренно высоких (300— 600 °С) и отличная коррозионная стойкость обеспечивают Т. с. хорошие перспективы применения в качестве конструкционных материалов во многих областях, в частности в авиации и др. отраслях транспортного машиностроения . Бериллиевые сплавы, сплавы на основе бериллия (Be). Промышленное применение Б. с. началось в 50-х гг. 20 в. Получение изделий из Be путём пластической деформации затруднено, т.к. Be обладает низкой пластичностью (вследствие гексагональной структуры и наличия примесей). При пластической деформации Be скольжение происходит в первую очередь в зёрнах, благоприятно ориентированных к прилагаемому напряжению. Неблагоприятная ориентация соседних зёрен вызывает на их стыке возникновение значительных напряжений, которые приводят к зарождению трещин. Эти недостатки в структуре Be (малое количество плоскостей и направлений скольжения) устраняются в некоторых Б. с., которые образуются введением т. н. пластичной матрицы (одного из металлов Ag, Sn, Cu, Si, Al и др.). Матрица обволакивает зёрна Be и способствует релаксации напряжений на границах неориентированных зёрен и развитию пластической деформации. При малом содержании в Be пластичной матрицы деформируется в основном Be, а матрица является релаксатором напряжений. При значительном содержании пластичной матрицы (например, сплавы Be с Al) пластическая деформация осуществляется в основном за счёт пластичного металла. Б. с. с повышенным содержанием пластичной матрицы легко деформируются (прокатываются, вытягиваются, куются), но обладают меньшей прочностью по сравнению с Б. с., имеющими пониженное содержание пластичной матрицы, и с Be.

БИЛЕТ № 9. Медные сплавы

Медные сплавы — первые металлические сплавы, созданные человеком. Примерно до сер. 20 в. по мировому производству медные сплавы занимали 1-е место среди сплавов цветных металлов, уступив его затем алюминиевым сплавам. Со многими элементами медь образует широкие области твёрдых растворов замещения, в которых атомы добавки занимают места атомов меди в гранецентрированной кубической решётке. Медь в твёрдом состоянии растворяет до 39 % Zn, 15,8 % Sn, 9,4 % Al, a Ni — неограниченно. При образовании твёрдого раствора на основе меди растут её прочность и электросопротивление, снижается температурный коэффициент электросопротивления, может значительно повыситься коррозионная стойкость, а пластичность сохраняется на достаточно высоком уровне. При добавлении легирующего элемента свыше предела растворимости образуются соединения, в частности электронные, т. е. характеризующиеся определённой электронной концентрацией (отношением суммарного числа валентных электронов к числу атомов, которое может быть равно 3/2, 21/13 или 7/4). Этим соединениям условно приписывают формулы CuZn, Cu5Sn, Cu31Sn8, Cu9Al4, CuBe и другие. В многокомпонентных медных сплавов часто присутствуют сложные металлические соединения неустановленного состава, которые значительно твёрже, чем раствор на основе меди, но весьма хрупки (обычно в двухфазных и многофазных медных сплавов доля их в структуре намного меньше, чем твёрдого раствора на основе меди).

Медные сплавы получают сплавлением меди с легирующими элементами или с промежуточными сплавами — лигатурами, содержащими легирующие элементы. Для раскисления (восстановления окислов) широко применяют введение в расплав малых добавок фосфора (десятые доли %). Медные сплавы подразделяют на деформируемые и литейные. Из деформируемых Медных сплавов отливают (в изложницы или непрерывным методом) круглые и плоские слитки, которые подвергают горячей и холодной обработке давлением: прокатке, прессованию через матрицу или волочению для производства листов, лент, прутков, профилей, труб и проволоки. Медные сплавы хорошо обрабатываются давлением, и деформированные полуфабрикаты составляют основную долю всего объёма их производства. Литейные медные сплавы обладают хорошими литейными свойствами, из них отливкой в земляные и металлические формы получают фасонные детали, а также декоративно-прикладные изделия и скульптуру.

БАББИТЫ (по ГОСТ 1320-74)

Общие сведения. Баббиты — белые легкоплавкие анти фрикционные сплавы на основе олова или свинца. Применяются для заливки вкладышей подшипников скольжения различных машин. Основные требования, предъявляемые к антифрикционным сплавам, определяются условиями работы вкладыша подшипника. Антифрикционные сплавы должны иметь высокую износостойкость и малый коэффициент трения между валом и подшипником; достаточную пластичность для лучшей прирабатываемости к поверхности вала; твердость, достаточную для вкладыша как опоры вала, но не вызывающую сильного износа самого вала; обладать микрокапиллярностью, т.е. способностью удерживать смазочные материалы. Указанные требования обеспечиваются неоднородной структурой антифрикционных сплавов, состоящей из мягкой основы с равномерно распределенными в ней твердыми включениями.

При вращении вал опирается на твердые частицы, обеспечивающие износостойкость и способность воспринимать сравнительно высокие удельные давления, а мягкая основа, изнашиваясь быстрее, прирабатывается к валу и образует сеть каналов (микрорельеф). удерживающих смазочный материал.

Оловянные и свинцовые баббиты.

ГОСТ 1320-74 распространяется на оловянные и свинцовые баббиты в чушках, применяемые для заливки подшипников скольжения и других антифрикционных деталей.

В зависимости от химического состава устанавливаются следующие марки баббитов: Б88, Б83, Б83С (оловянные баббиты); Б16, БН и БС6 (свинцовые баббиты).

Среди баббитов лучшими антифрикционными свойствами обладают оловянные. Они применяются для подшипников ответ ственного назначения, когда от антифрикционного материала требуются минимальный коэффициент трения, высокая износостойкость и вязкость. По сравнению с баббитами на основе свинца износ оловянных баббитов в два раза меньше.Все оловянные баббиты содержат в своем составе сурьму и медь, а баббит Б88 дополнительно легирован кадмием и никелем. Структура оловянных баббитов состоит из мягкой основы (раствора сурьмы в олове) и равномерно распределенных в ней твердых частиц химического соединения SnSb. Таким образом, сурьма упрочняет мягкую основу баббитов и создает включения высокой твердости. Добавка меди дополнительно увеличивает твердость оловянных баббитов (за счет образования твердых включений Cu3Sn и препятствует ликвации по плотности. Незначительные добавки кадмия и никеля не образуют новых составляющих в структуре баббита Б88, но уменьшают размеры кристаллитов химического соединения. Баббит Б88 применяется для подшипников, работающих при больших скоростях и высоких динамических нагрузках. Для подшипников, работающих при больших скоростях и средних нагрузках, применяются баббиты Б83 и Б83С. Недостаток оловянных баббитов — высокое содержание дорогого и дефицитного олова. Более дешевые свинцовые баббиты применяют в менее ответственных случаях, так как они уступают оловянным баббитам по механическим и антифрикционным свойствам, а также и по коррозионной стойкости. Свинцовые баббиты имеют структуру, состоящую из эвтектики (мягкая основа) и твердых частиц β фазы (SnSb), СuзSn и Си2Sb. . Содержание дефицитного олова в свинцовых баббитах снижено (5,5-17%). Для предотвращения ликвации при литье из-за различия плотности олова, свинца и более легкой сурьмы в свинцовые баббиты вводят добавки меди. Наиболее простой по химическому составу баббит Б 16 имеет повышенную хрупкость и применяется только для спокойных условий работы без динамических нагрузок. Баббит БН дополнительно легирован никелем, мышьяком и кадмием. Добавка никеля повышает твердость и износостойкость сплава. Мышьяк улучшает жидкотекучесть баббита и повышает его теплопрочность. Кадмий вводят для повышения прочности и коррозионной стойкости сплава. Самый дешевый баббит марки БС6 обладает достаточнойвязкостью и применяется для работы в условиях ударных нагрузок.

19 вопрос.

Точность зубчатых передач и основные ее показатели

Основным показателем качества зубчатых колес является их точность. Точность изготовления зубчатых колес и зубчатых передач определяет их кинематические и геометрические эксплуатационные показатели, динамические характеристики (интенсивность шума и вибраций), потери на трение, долговечность работы и прочностные показатели.

Основными показателями точности зубчатых передач являются:

  • кинематическая точность;

  • плавность работы;

  • контакт зубьев;

  • боковой зазор.

20 вопрос.

Кинематика и геометрия цилиндрических зубчатых передач

 Цилиндрические зубчатые передачи.

Краткие сведения по геометрии и кинематике

Зацепление зубчатых колес эквивалентно качению без скольжения окружностей с диаметрами dwX и dw2 (рис. 11.2). Эти окружности называются начальными. Точка их касания Π называется полюсом зацепления. Полюс лежит на линии, соеди­няющей оси колес О, и 02.Расстояние между осями колес aназывается межосевым расстоянием.

Рис, 11.2. Зацепление эвольвентных зубчатых колес

 

Из зависимостей для межосевого расстояния aw и переда­точного отношения и

 

 

 

диаметры начальных окружностей выражаются формулами

 

 

 

Знак «-» — для внутреннего зацепления (см. рис. 11.1, г).

Основным кинематическим условием, которому должны удовлетворять профили зубьев, является постоянство передаточ­ного отношения « = а>|/<й2 = dw2/dw] . При этом нормаль N{N2 к профилям зубьев в точке контакта К должна проходить через полюс зацепления. Этому условию удовлетворяют многие классы кривых (эвольвента, циклоида и др.).

Эвольвеитное зацепление получило наибольшее распро­странение из-за преимуществ перед другими. Зубчатые колеса нарезают простым инструментом; при этом используется один и тот же инструмент независимо от числа зубьев колеса.

Эвольвента окружности образуется точками К прямой N]Nпри качении ее без скольжения по окружностям с диаметрами db] или db2 (см. рис. 11.2). Эти окружности называются основ­ными.

Линия N\N2 перемещения общей точки контакта К профи­лей зубьев при вращении колес называется линией зацепления. Угол ат, между линией зацепления и прямой, перпендикулярной межосевой линии, называется углом зацепления.

Линия зацепления всегда является касательной к основным окружностям dh[ =dwi cosant, и db2 =rfw2cosatw ■При изменении межосевого расстояния, например, из-за ошибок изготовления, вместе с осями колес переместятся и основные окружности. 

21 вопрос.

Виды разрушение зубьев и зубчатых колес.

Наблюдаются следующие основные виды разрушения зубьев: поломка, износ и выкрашивание.

В начале зацепления к вершине зуба прикладывается нагрузка, в результате которой возникают напряжения изгиба. Эти напряжения имеют наибольшее значение, если нагрузка приложена к вершине зуба. Поломка зуба возможна в результате значительной кратковременной перегрузки (пиковой нагрузки), при которой статическая прочность окажется недостаточной, или из-за повторно-переменных напряжений.

Напряжения изгиба, возникающие в зубьях, переменны во времени, так как зубья не все время находятся в зацеплении. Под влиянием переменных напряжений при недостаточной усталостной прочности зубьев возможно возникновение трещин у их основания. Развитие усталостной трещины приводит к излому зубьев.

Износ зубьев, происходящий вследствие истирания поверхностей зубьев попадающими в зону зацепления металлическими частицами, пылью, грязью, называется абразивным. В результате такого износа происходит ослабление зубьев, уменьшение размеров их сечений, возрастание напряжений и поломка зубьев. Износ может происходить и из-за большой шероховатости поверхности зубьев.

10 вопрос

Конструкционные металлы.Неметалические материалы.

Конструкционные материалы, материалы, из которых изготовляются детали конструкций (машин и сооружений), воспринимающих силовую нагрузку. Определяющими параметрами Конструкционные материалы являются механические свойства, что отличает их от других технических материалов (оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и др.). К основным критериям качества Конструкционные материалы относятся параметры сопротивления внешним нагрузкам: прочность, вязкость, надежность, ресурс и др. Длительный период в своём развитии человеческое общество использовало для своих нужд (орудия труда и охоты, утварь, украшения и др.) ограниченный круг материалов: дерево, камень, волокна растительного и животного происхождения, обожжённую глину, стекло, бронзу, железо.Промышленный переворот 18 в. и дальнейшее развитие техники, особенно создание паровых машин и появление в конце 19 в. двигателей внутреннего сгорания, электрических машин и автомобилей, усложнили и дифференцировали требования к материалам их деталей, которые стали работать при сложных знакопеременных нагрузках, повышенных температурах и др. Основой Конструкционные материалы стали металлические сплавы на основе железа (чугуны и стали), меди (бронзы и латуни), свинца и олова. Конструкционные материалы подразделяются: по природе материалов — на металлические, неметаллические и композиционные материалы, сочетающие положительные свойства тех и др. материалов; по технологическому исполнению — на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и т.п.); по условиям работы — на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и т.д.; по критериям прочности — на материалы малой и средней прочности с большим запасом пластичности, высокопрочные с умеренным запасом пластичности.

Неметаллические конструкционные материалы нашли широкое применение в различных отраслях народного хозяйства. Используются также для защиты различных металлических конструкций от коррозии. Применение таких конструкционных материалов позволяет также сэкономить денежные средства, заменяя ими более дорогостоящие.

РЕЗИНА

Резина – один из самых распространенных конструкционных материалов. Применяется во многих отраслях промышленности, народного хозяйства, в особенности, в автомобилестроении. Существует большое количество различных видов и марок резины, которые используются для изготовления определенных изделий, например шин, втулок, шланги, изоляционные материалы и др.Любая резина изготавливается из каучука.

Каучуки – высокомолекулярные соединения, которые обладают способностью выдерживать большие механические нагрузки, даже при пониженных температурах. Особенностью каучуков можно считать то, что эти нагрузки обратимы.

Каучуки обладают высокой эластичностью, т.к. их молекула в нормальном виде (не под воздействием каких-либо напряжений) находится в свернутом состоянии. При приложении напряжения она просто выпрямляется и приходит в нормальное состояние по окончанию воздействия нагрузки.

Существуют натуральные и синтетические каучуки, которые используются для производства резины и некоторых других материалов специального назначения.

КЕРАМИКА (ЗАЩИТНЫЕ КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ)

Керамические материалы получают обжигом силикатных материалов (до спекания), а также веществ, которые применяются для понижения температуры шихты. Керамика – это материал, основной составляющей которой являются глина на основе Al2O3 (больше, чем 20%).

К таким керамическим материалам относятся сама керамика, фарфор, кислотоупорная эмаль, каменно-керамические изделия и многое другое.

Фарфор – это тонкокристаллический материал, который получают обжигом при температурах около 1300 - 1450°С. Фарфор довольно прочный, не пропускает воду, газы. Фарфор стоек в кислотах (даже в плавиковой). Отличается высокой термостойкостью, износостойкостью, твердостью. Не боится резких и больших перепадов температур (сохраняет свои свойства при перепаде температуры от 20 до 1000°С). Пор в материале крайне мало и они незаметны невооруженным глазом.

Фарфор не взаимодействует с различными реагентами и поэтому нашел широкое применение в тех областях, где нужна особая чистота используемых материалов (фармацевтика, пищевая промышленность и др.)

Применяют фарфор также и в химической промышленности, даже в металлургии для изготовления тиглей, разных емкостей, фильтров, вакуум-аппаратов и т.д.

Фарфор является отличным футеровочным материалом для травильных ванн, металлических аппаратов. В шаровых мельницах фарфором покрыта поверхность шаров.

В металлургии широко используется огнеупорная керамика (огнеупор), которой покрыты плавильные и другие печи, агрегаты (используется также для строительства). К такому материалу предъявляются определенные требования: огнеупорная керамика должна выдерживать очень высокую температуру, не теряя своих первоначальных свойств, т.е. не подвергаться короблению (деформации), разрушению, особенно при резких перепадах температуры.

Огнеупорная керамика (в производстве называют просто огнеупорным кирпичом) бывает нескольких видов: шамотная, кислая (динасовая), полукислая, тальковая и др. Эти виды огнеупоров отличаются по составу и каждый вид используется только в определенной среде.

Керамические материалы нашли широкое применение при защите металлов от коррозии. Например, пористая керамика используется для изготовления электролизеров (а именно, диафрагмы), для специальных пластин-фильтров для кислородных установок и многого другого.

С пористой керамики делают поролитовые плитки. Для очистки газов (на конечных стадиях) используются фильтры также из пористой керамики.

ПЛАСТИЧЕСКИЕ МАССЫ (ПЛАСТМАССЫ)

Пластмассы – это высокополимерные материалы или композиции из них, которые при определенных условиях (изменение температуры и давления) могут переходить в пластическое состояние или же менять свою форму.

В противокоррозионной защите пластические массы нашли широкое применение, т.к. сочетают в себе ряд полезных и очень ценных свойств. Этот вид материалов не подвергается атмосферной коррозии, имеет невысокую плотность (что отражается сильно на их весе), не разрушаются под воздействием многих растворам солей, щелочей и кислот. Пластические массы являются хорошими диэлектриками, обладают теплоизоляционными свойствами, а также могут быть эластичными или упругими, радио- и оптическипрозрачными.

Из пластических масс легко формовать изделия. Материал хорошо поддается механической обработке. По прочности некоторые виды пластмасс могут превосходить сплавы цветных металлов и углеродистые стали. Все пластические массы проявляют высокую стойкость во многих коррозионных средах, но в то же время имеют и свои недостатки. Они подвержены старению, быстро плавятся при повышении температуры, относительно легко ломаются (имеют невысокую твердость), плохо проводя тепло.

Широкое распространение получили сложные (композиционные) пластмассы и простые (ненаполненные). В состав сложных пластических масс входит смола и другие вещества, которые выполняют функции наполнителей, связующего, отвердителей, пластификаторов, красителей и др. При изготовлении простых пластмасс используется только одно вещество, от характеристик которого и зависят свойства пластической массы.

Силикатные матриалы.

Асбест, граниты, андезиты, бештауниты относятся к кислотостойким природным соединениям.

Асбест, кроме высокой стойкости к кислотам, является еще и отличным огнеупорным материалом. Это дигидрат силиката магния (3MgO×2SiO2•2H2O).

Граниты термостойки до температуры 250°С. В состав гранитов входит около 70-75% SiO2, 13-15% Al2O3, оксиды кальция, магния и натрия занимают около 8-10%.

Бештауниты отличаются повышенной кислотостойкостью, твердостью, термостойкостью (до 800°С), тугоплавкостью. SiO2 в бештаунитах содержится около 60-70%.

Горные породы довольно востребованный материал, но сложность их добычи немного притормаживает широкое распространение в народном хозяйстве. Однако в некоторых случаях горные породы являются незаменимыми.

Асбест, в большинстве случаев, используется как вспомогательный материал, в виде наполнителя, фильтрующей ткани, нитей, применяется в изоляции корпусов различных аппаратов.

Из неметаллических конструкционных материалов могут быть изготовлены устройства и агрегаты, а также отдельные детали к ним. Кроме того, неметаллические конструкционные материалы используются в качестве защиты основного материала изделия (например, футеровка ванны травления выполнена из неметалла, а основа – металлическая).

Свойства неметаллических конструкционных материалов многообразны: высокая стойкость в различных агрессивных средах, небольшая плотность, различная теплопроводность, хорошая адгезия к поверхности металла и др. Большинство из них все же не выдерживают высоких температур (особенно это относится к неметаллическим конструкционным материалам органического происхождения, которые разрушаются уже при 150-200°С), плохо реагируют на перепады температуры, трудно обрабатываются.

В средах с повышенной агрессивностью очень важную роль играет способность защитного покрытия изолировать основную конструкцию. Между подложкой и внешней средой не должно быть прямого контакта. Для обеспечения полной изоляции используются утолщенные слои одного материала или же многослойные покрытия, которые включают в себя несколько относительно тонких слоев из разных материалов. Довольно часто, когда один материал наносят слишком толстым слоем, в нем возникают внутренние напряжения, и защитное покрытие довольно быстро разрушается.

В нефтеперерабатывающей и химической промышленности широкое распространение получили именно многослойные защитные покрытия, сформированные из неметаллических конструкционных материалов.

Условно в покрытии можно выделить три основные зоны, которые несут в себе различные функции:

- нижний слой (грунт), который прилегает непосредственно к основному материалу и обеспечивает стабильность связи между подложкой и покрытием;

- средняя часть (основное покрытие) определяет механические и изоляционные свойства;

- внешний слой, поверхностный, который вступает в непосредственный контакт с агрессивной средой (иногда ему придают специальные свойства).

Среди неметаллических конструкционных материалов в противокоррозионной защите нашли широкое применение резины, пластические массы (пластмассы), различные силикатные материалы и многие другие.

11 вопрос

Титановые,тугоплавкие и никелевые сплавы.

Никелевые сплавы, сплавы на основе никеля. Способность никеля растворять в себе значительное количество др. металлов и сохранять при этом пластичность привела к созданию большого числа Никелевые сплавы Полезные свойства Никелевые сплавы в определенной степени обусловлены свойствами самого никеля, среди которых наряду со способностью образовывать твёрдые растворы со многими металлами выделяются ферромагнетизм, высокая коррозионная стойкость в газовых и жидких средах, отсутствие аллотропических превращений.Важную роль в технике играют ферромагнитные сплавы Ni (40-85%) с Fe, относящиеся к классу магнитно-мягких материалов. Среди этих материалов имеются сплавы, характеризующиеся наивысшим значением магнитной проницаемости (см. Пермаллой), её постоянством, сочетанием высокой намагниченности насыщения и магнитной проницаемости. Такие сплавы применяют во многих областях техники, где требуется высокая чувствительность рабочих элементов к изменению магнитного поля. Никелевые сплавы, содержащие 15-30% Cr, легированные Al (до 4%), более жаростойки, чем сплавы, легированные Si. Однако из них труднее получить однородную по составу проволоку или ленту, что необходимо для надёжной работы электронагревателей. Поэтому такие Никелевые сплавы используются в основном для изготовления жаростойких деталей, не подверженных большим механическим нагрузкам при температурах до 1250 °С. Важную роль в технике играют легированные сплавы Ni - Cr, Ni - Mo и Ni - Mn, обладающие ценным сочетанием электрических свойств: высоким удельным электрическим сопротивлением (r = 1,3-2,0 мком×м), малым значением температурного коэффициента электрического сопротивления (порядка 10-5 1/°С), малым значением термоэдс в паре с медью (менее 5 мв/°С). По величине температурного коэффициента электрического сопротивления эти сплавы уступают манганину в интервале комнатных температур, однако, имеют в 3-4 раза большее удельное электрическое сопротивление. Главная область применения таких сплавов - малогабаритные резистивные элементы, от которых требуется постоянство электрических свойств в процессе службы. Элементы изготавливаются, как правило, из микропроволоки или тонкой ленты толщиной 5-20 мкм. Сплавы на основе Ni - Mo и Ni - Cr применяют также для изготовления малогабаритныхтензорезисторов, характеризующихся почти линейной зависимостью изменения электрического сопротивления от величины упругой деформации.Для химической аппаратуры, работающей в высокоагрессивных средах, например в соляной, серной и фосфорной кислотах различной концентрации при температурах, близких к температуре кипения, широко используются сплавы Ni - Mo или Ni - Cr - Mo, известные за рубежом под названием хастелой, реманит и др., а в СССР - сплавы марок H70M28, Н70М28Ф, Х15Н55М16В, Х15Н65М16В. Эти сплавы превосходятпо коррозионной стойкости в подобных средах все известные коррозионностойкие стали.

Титановые сплавы.

Титановые сплавы получают путём легирования титана следующими элементами (числа в скобках — максимальная для промышленных сплавов концентрация легирующей добавки в % по массе): Al (8), V (16), Mo (30), Mn (8), Sn (13), Zr (10), Cr (10), Cu (3), Fe (5), W (5), Ni (32), Si (0,5); реже применяется легирование Nb (2) и Та (5). Как микродобавки применяются Pd (0,2) для повышения коррозионной стойкости и В (0,01) для измельчения зерна. Легирующие добавки имеют различную растворимость в a и b-Ti и изменяют температуру a/b-превращения. Алюминий, а также кислород и азот, предпочтительнее растворяющиеся в a-Ti, повышают эту температуру по мере увеличения их концентрации, что ведёт к расширению области существования a-модификации; такие элементы называются a-стабилизаторами. Sn и Zr хорошо растворяются в обеих аллотропических модификациях титана и очень мало влияют на температуру «a/b-превращения; они относятся к так называемым нейтральным упрочнителям. Все остальные добавки к промышленным Титановые сплавы предпочтительнее растворяются в b-Ti, являются b-стабилизаторами и снижают температуру полиморфного превращения титана. Их растворимость в a и b-модификациях титана меняется с температурой, что позволяет упрочнять сплавы, содержащие эти элементы, путём закалки и старения. Общепринято деление промышленных Титановые сплавы на 3 группы по типу структуры. К сплавам на основе a-структуры относятся сплавы с Al, Sn и Zr, а также с небольшим количеством b-стабилизаторов (0,5—2%). Ввиду незначительного количества или даже отсутствия в их структуре b-фазы они практически не упрочняются термической обработкой и поэтому относятся к категории сплавов средней прочности (sb = 700—950Мн/м2; или 70—95 кгс/мм2). Листовая штамповка этих Титановые сплавы возможна только вгорячую. Достоинства a-сплавов — отличная свариваемость, высокий предел ползучести и отсутствие необходимости в термической обработке, а также отличные литейные свойства, что важно для фасонного литья. Малолегированные a-сплавы, а также относимый к этой группе технический титан, имеющие предел прочности менее 700Мн/м2 (70 кгс/мм2), поддаются листовой штамповке вхолодную. Двухфазные a + b-сплавы — наиболее многочисленная группа промышленных Титановые сплавы Эти сплавы отличаются более высокой технологической пластичностью, чем a-сплавы, и вместе с тем могут быть термически обработаны до очень высокой прочности (sb = 1500—1800 Мн/м2, или 150—180 кг/мм2); они могут обладать высокой жаропрочностью. К недостаткам двухфазных сплавов следует отнести несколько худшую свариваемость по сравнению со сплавами предыдущей группы, так как в зоне термического влияния возможно появление хрупких участков и образование трещин, для предотвращения чего требуется специальная термическая обработка после сварки. Сплавы на основе b-структуры имеют наиболее высокую технологическую пластичность и хорошо поддаются листовой штамповке вхолодную; после старения приобретают высокую прочность; хорошо свариваются, но сварные соединения нельзя подвергать упрочняющей термической обработке из-за охрупчивания, что ограничивает применение сплавов этого типа. Другим недостатком (b-сплавов является сравнительно невысокая предельная рабочая температура — примерно 300 °С; при более высоких температурах большинство сплавов этого типа становится хрупким.

Тугоплавкие сплавы.

Общепринято деление промышленных Титановые сплавы на 3 группы по типу структуры. К сплавам на основе a-структуры относятся сплавы с Al, Sn и Zr, а также с небольшим количеством b-стабилизаторов (0,5—2%). Ввиду незначительного количества или даже отсутствия в их структуре b-фазы они практически не упрочняются термической обработкой и поэтому относятся к категории сплавов средней прочности (sb = 700—950Мн/м2; или 70—95 кгс/мм2). Листовая штамповка этих Титановые сплавы возможна только вгорячую. Достоинства a-сплавов — отличная свариваемость, высокий предел ползучести и отсутствие необходимости в термической обработке, а также отличные литейные свойства, что важно для фасонного литья. Малолегированные a-сплавы, а также относимый к этой группе технический титан, имеющие предел прочности менее 700Мн/м2 (70 кгс/мм2), поддаются листовой штамповке вхолодную. Двухфазные a + b-сплавы — наиболее многочисленная группа промышленных Титановые сплавы Эти сплавы отличаются более высокой технологической пластичностью, чем a-сплавы, и вместе с тем могут быть термически обработаны до очень высокой прочности (sb = 1500—1800 Мн/м2, или 150—180 кг/мм2); они могут обладать высокой жаропрочностью. К недостаткам двухфазных сплавов следует отнести несколько худшую свариваемость по сравнению со сплавами предыдущей группы, так как в зоне термического влияния возможно появление хрупких участков и образование трещин, для предотвращения чего требуется специальная термическая обработка после сварки. Сплавы на основе b-структуры имеют наиболее высокую технологическую пластичность и хорошо поддаются листовой штамповке вхолодную; после старения приобретают высокую прочность; хорошо свариваются, но сварные соединения нельзя подвергать упрочняющей термической обработке из-за охрупчивания, что ограничивает применение сплавов этого типа. Другим недостатком (b-сплавов является сравнительно невысокая предельная рабочая температура — примерно 300 °С; при более высоких температурах большинство сплавов этого типа становится хрупким.

Вольфрам и его сплавы по-прежнему используются там, где присутствуют высокие температуры, но нужна однако высокая твёрдость и где высокой плотностью можно пренебречь[10]. Нити накаливания, состоящие из вольфрама, находят свое применение в быту и в приборостроении. Лампы более эффективно преобразовывают электроэнергию в свет с повышением температуры[9]. В вольфрамовой газодуговой сварке (англ.) оборудование используется постоянно, без плавления электрода. Высокая температура плавления вольфрама позволяет ему быть использованным при сварке без затрат.Высокая плотность и твёрдость позволяют вольфраму быть использованным в артиллерийских снарядах. Его высокая температура плавления применяется при строении ракетных сопел, примером может служить ракета «Поларис». Иногда он находит свое применение благодаря своей плотности. Например, он находит свое применение в производстве клюшек для гольфа. В таких деталях применение не ограничивается вольфрамом, так как более дорогой осмий тоже может быть использован.Молибден является самым часто используемым тугоплавким металлом. Наиболее важным является его использование в качестве усилителя сплавов стали. Применяется при изготовлении трубопроводов вместе с нержавеющей сталью. Высокая температура плавления молибдена, его сопротивляемость к износу и низкий коэффициент трения делают его очень полезным материалом для легирования. Его прекрасные показатели трения приводят его к использованию в качестве смазки где требуется надежность и производительность. Применяется при производстве ШРУСов в автомобилестроении.Тугоплавкие металлы и их сплавы привлекают внимание исследователей из-за их необычных свойств и будущих перспектив в применении.

Физические свойства тугоплавких металлов, таких как молибден, тантал и вольфрам, их показатели твёрдости и стабильность при высоких температурах делает их используемым материалом для горячей металлообработки материалов как в вакууме, так и без него. Многие детали основаны на их уникальных свойствах: например, вольфрамовые нити накаливания способны выдерживать температуры вплоть до 3073K.

Однако, их сопротивляемость к окислению вплоть до 500 °C делает это одним из главных недостатков этой группы. Контакт с воздухом может существенно повлиять на их высокотемпературные характеристики. Именно поэтому их используют в материалах, в которых они изолированы от кислорода (например лампочка).

Сплавы тугоплавких металлов — молибдена, тантала и вольфрама — применяются в деталях космических ядерных технологий. Эти компоненты были специально созданы в качестве материала способного выдержать высокие температуры (от 1350K до 1900K). Как было указано выше, они не должны контактировать с кислородом.

15. Механические устройства, применяемые для передачи энергии от ее источника к потребителю с изменением угловой скорости или вида движения, называют механическими передачами. Передавая механическую энергию, передачи одновременно могут выполнять следующие функции:

– понижать и повышатьугловые скорости, соответственно повышая или понижая вращающие моменты;

– преобразовывать один вид движения в другой (вращательное в возвратно-поступательное, равномерное в прерывистое и т.д.);

– регулировать угловые скорости рабочего органа машины;

– реверсировать движение (прямой и обратный ход);

– распределять работу двигателя между несколькими исполнительными органами машины.

В современном машиностроении применяются механические, пневматические, гидравлические и электрические передачи. В настоящем лабораторном практикуме рассматриваются наиболее распространенные из механических передач: передачи зацеплением – зубчатые, червячные, планетарные, волновые; передачи трением – фрикционные и ременные. В передачи зацеплением входят и цепные передачи.

В зависимости от способа соединения ведущего и ведомого звеньев бывают:

1. передачинепосредственного контакта – зубчатые, червячные, планетарные, волновые и фрикционные;

2. передачи с гибкой связью – ременные. Сюда относят и цепные передачи. Передачи с гибкой связью допускают значительные расстояния между ведущим и ведомым валами.

Особенности каждой передачи и ее применения определяются следующими основными характеристиками:

1. Мощностью на ведущем Р1 и ведомом Р2 валах.

2. Угловой скоростью ведущего ω1 и ведомого ω2 валов (рис.1.1).

Эти две основные характеристики необходимы для выполнения проектного расчета любой передачи.

Все передачи трением имеют повышенный износ рабочих поверхностей, так как в них неизбежно проскальзывание одного звена относительно другого.

Основные параметры – параметры входного и исходного вала – мощность P (квт) и частота обращения n (мин-)

Производныепараметры:

В зависимости от параметроввходного и исходноговаловпередачиподразделяются на:

редукторы - уменьшают частоту обращения от входного вала к выходному (n1 >n2) и увеличиваюткрутящий момент (понижающиепередачи);

мультипликаторы – увеличивают частоту обращения от входного вала к исходному (n1 <n2) и уменьшают момент, которыйкрутит, (повышающиепередачи).

Механическая передача - механизм, превращающий кинематические (n) и энергетические параметры (P) двигателя в необходимые параметры рабочей машины.

Двигатели работают в узком диапазоне частот обращения и моментов, рабочие машины - в широком.

Типы механических передач

зубчатые передачи ( цилиндрические, конические),винтовые (винтовые, червячные, гепоидные),с гибкими элементами (ременные, цепные),фрикционные (за счет трения, применяются в плохих условиях работы

По способу передачи движения:

движение с вала на вал передается за счет сил трения (фрикционные, ременные, червячные), движение передается зацеплением (зубчатые, цепи, винту, с зубчатыми ремнями, червячные).