
- •1)Химические компоненты растительной клетки, их функциональная роль.
- •2)Мембраны цитоплазмы, хим. Состав, структура, функции.
- •3)Общие свойства и функции ферментов. Кинетика ферментативных реакций.
- •4)Механизмы поглощения вещества растительной клетки Поступление веществ в растительную клетку.
- •5)Физиологическая природа ответных реакций клетки на повреждающее воздействие и основанные на них тесты оценки состояния растения.
- •6)Культура клеток и тканей, использование в селекции, для оздоровления посадочного материала и для получения физиологически активных препаратов.
- •1)Свойства и роль воды в жизни растений.
- •2)Двигатели водного тока в растении.
- •3)Корневое давление, его размеры и физиологическая роль; зависимость корневого давления от внутренних и внешних факторов.
- •4)Транспирация, методы учета и зависимость от условий.
- •5)Физиология устьичных движений. Применение антитранспирантов при пересадке крупномерного материала.
- •1. Фотоактивное движение устьиц
- •2. Гидроактивное движение устьиц
- •6)Транспирационный коэффициент и коэффициент водопотребления. Пути повышения эффективности использования воды растения.
- •7)Методы изучения параметров водного обмена и их использование.
- •8)Физиологические основы орошения.
- •1.Особенности анатомо-морфологической структуры листа как органа фотосинтеза.
- •1. Эпидермис
- •2. Мезофилл, или хлоренхима
- •3. Проводящие ткани.
- •2)Химический состав, структура и функции хлоропластов.
- •I. Структура хлоропластов
- •II. Химический состав хлоропластов
- •3)Пигменты листа, методы их выделения и разделения. Изменение содержания пигментов в зависимости от вида растений и условий произрастания. Методы выделения и разделения пигментов листа.
- •1.Разделение пигментов по Краусу
- •2.Разделение пигментов хроматографическим методом.
- •3.Определение пигментов методом бумажной хроматографии
- •4)Пигменты листа, их химическая природа и оптические свойства. Роль пигментов в процессе фотосинтеза. Пигменты листа, их химическая природа и оптические свойства
- •I. Зеленые пигменты – хлорофиллы
- •3. Оптические свойства хлорофиллов
- •II.Каротиноиды
- •5)Световая фаза фотосинтеза.
- •6)Темновая фаза фотосинтеза.
- •7)Влияние на фотосинтез внутренних и внешних условий
- •8)Дневная динамика и сезонные изменения фотосинтеза.
- •9)Взаимодействие факторов при фотосинтезе. Использования принципа взаимодействия факторов для регулирования фотосинтетической деятельности насаждений.
- •10)Светолюбивые и теневыносливые растения, их физиологические различия. Использование знаний о светолюбии и теневыносливости растений в садоводстве.
- •11)Фотосинтез и урожай.
- •12)Пути повышения продуктивности фотосинтеза фитоценоза.
- •13)Методы изучения фотосинтеза.
- •14)Физиологические основы выращивания растений при искусственном освещении.
- •15)Транспорт органических веществ в растении.
- •1)Оксидоредуктазы, их химическая природа и роль.
- •3)Аэробная фаза дыхания.
- •4)Энергетика дыхания, вклад в нее анаэробной и аэробной фаз
- •5)Использование энергии дыхания в физиологических процессах.
- •6) Роль дыхания в жизни растений
- •7)Влияние внешних и внутренних факторов на интенсивность дыхания.
- •8)Дыхательные коэффициент, способ его определения и возможность использования для физиологической характеристики растительных объектов.
- •9)Методы изучения дыхания.
- •1)Физиологическая роль азота, особенности питания растений нитратными и аммонийными солями.
- •2)Калий, кальций и магний, их роль, усвояемые формы, поглощение и распределение в растении. Внешние признаки недостатка этих элементов.
- •3)Физиологическая роль фосфора и серы, их усвояемые формы, поглощение и распределение по растению. Внешние признаки недостатка этих элементов.
- •4)Физиологическая роль микроэлементов, внешние признаки и способы предотвращения голодания растений.
- •5)Поглощение, распределение по органам и вторичное использование (реутилизация) элементов минерального питания в растениях.
- •6)Физиологические основы диагностики обеспеченности растений элементами минерального питания.
- •7)Физиологические основы применения удобрений.
- •8)Листовая диагностика корневого питания растений.
- •9)Вегетационный и полевой методы исследования, их роль в изучении основных закономерностей жизнедеятельности растений и решении практических задач.
- •10)Физиологические основы выращивания растений без почвы, использование в практике защитного грунта.
- •1)Фазы роста клеток, роль в формировании тканей и органов растений.
- •2)Влияние внешних и внутренних факторов на рост растений. Контроль за ростовыми процессами.
- •3)Корреляция роста. Их физиологическая природа и возможности использования в садоводстве.
- •4)Закономерности роста растений, их использование в садоводстве.
- •5)Онтогенез и основные этапы развития растения.
- •6)Фитогормоны растений, общие закономерности действия и роль в регуляции роста и развития.
- •7)Физиология формирования семян и сочных плодов.
- •8)Зависимость качества урожая от сорта, почвенно-климатических условий и сроков уборки.
- •9)Возрастные изменения морфологических и физиологических признаков растений, их отдельных органов. Возможности регулирования возрастных изменений растений.
- •10)Синтетические регуляторы роста, их практическое применение.
- •11)Ростовые двиэжения : тропизмы, настии их значение в жизни растения
- •12)Фотопериодизм раст, его роль и возможности использования для регуляции роста и развития раст.
- •14)Регулирование роста светом.. Экологическая роль фитохрома.
- •15)Физиологические основы размножения древесных пород
- •1)Физиологические основы устойчивости растений к неблагоприятным условиям среды.
- •2)Холодоустойчивость растений. Причины повреждения и гибели теплолюбивых культур при низких положительных температурах.
- •3)Морозоустойчивость растений, причины повреждения и гибели растений при отрицательных температурах. Значение работ и.И.Туманова.
- •4)Зимостойкость как устойчивость растений к комплексу неблагоприятных факторов, причины зимних повреждений растений, их предотвращение.
- •5)Засухоустойчивость и жароустойчивость растений. Значение работ н.А.Максимова в изучении засухоустойчивости растений.
- •6)Солеустойчивость растений. Типы засоления, причины повреждений, и пути повышения солеустойчивости растений.
- •7)Действия на растения загрязнения среды.
- •8)Нарушение физиологических процессов под влиянием инфекции. Иммунитет растений. Использование культуры ткани для получения безвирусного посадочного материала.
- •9)Анатомо-физиологические особенности ксерофитов и мезофитов, способы их приспособления к недостатку воды в окружающей среде.
- •10)Закаливание растений, физиологические основы и возможности применения в садоводстве.
3)Аэробная фаза дыхания.
Аэробное дыхание – это окислительный процесс, в ходе которого расходуется кислород. При дыхании субстрат без остатка расщепляется до бедных энергией неорганических веществ с высоким выходом энергии. Важнейшими субстратами для дыхания служат углеводы. Кроме того, при дыхании могут расходоваться жиры и белки.
Аэробное дыхание включает два основных этапа:
- бескислородный, в процессе, которого происходит постепенное расщепление субстрата с высвобождением атомов водорода и связыванием с коферментами (переносчиками типа НАД и ФАД);
- кислородный, в ходе которого происходит дальнейшее отщепление атомов водорода от производных дыхательного субстрата и постепенное окисление атомов водорода в результате переноса их электронов на кислород.
На первом этапе вначале высокомолекулярные органические вещества (полисахариды, липиды, белки, нуклеиновые кислоты и др.) под действием ферментов расщепляются на более простые соединения (глюкозу, высшие карбоновые кислоты, глицерол, аминокислоты, нуклеотиды и т.п.) Этот процесс происходит в цитоплазме клеток и сопровождается выделением небольшого количества энергии, которая рассеивается в виде тепла. Далее происходит ферментативное расщепление простых органических соединений.
Примером такого процесса является гликолиз – многоступенчатое бескислородное расщепление глюкозы. В реакциях гликолиза шестиуглеродная молекула глюкозы (С ) расщепляется на две трехуглеродные молекулы пировиноградной кислоты (С ). При этом образуется две молекулы АТФ, и выделяются атомы водорода. Последние присоединяются к переносчику НАД (никотинамидадениндинклеотид), который переходит в свою восстановительную форму НАД ∙ Н + Н . НАД кофермент, близкий по своей структуре к НАДФ. Оба они представляют собой производные никотиновой кислоты – одного из витаминов группы В. Молекулы обоих коферментов электроположительны (у них отсутствует один электрон) и могут играть роль переносчика как электронов, так и атомов водорода. Когда акцептируется пара атомов водорода, один из атомов диссоциирует на протон и электрон:
Н → Н + е ,а второй присоединяется к НАД или НАДФ целиком:НАД + Н + [Н + е ] → НАД ∙ Н + Н .
Свободный протон позднее используется для обратного окисления кофермента. Суммарно реакция гликолиза имеет вид
C H O +2АДФ + 2Н РО + 2 НАД →
2С Н О + 2АТФ + 2 НАД ∙ Н + Н + 2 H O
Продукт гликолиза – пировиноградная кислота (С Н О ) – заключает в себе значительную часть энергии, и дальнейшее ее высвобождение осуществляется в митохондриях. Здесь происходит полное окисление пировиноградной кислоты до CO и H O. Этот процесс можно разделить на три основные стадии:1)окислительное декарбоксилирование пировиноградной кислоты;2)цикл трикарбоновых кислот (цикл Кребса);3) заключительная стадия окисления – электронтранспортная цепь.
На первой стадии пировиноградная кислота взаимодействует с веществом, которое называют коферментом А, в результате чего образуется ацетилкофермент а с высокоэнергетической связью. При этом от молекулы пировиноградной кислоты отщепляется молекула CO (первая) и атомы водорода, которые запасаются в форме НАД ∙ Н + Н .
Вторая стадия – цикл Кребса (рис. 1)
В цикл Кребса вступает ацетил–КоА, образованный на предыдущей стадии. Ацетил–КоА взаимодействует со щавелево-уксусной кислотой, в результате образуется шестиуглеродная лимонная кислота. Для этой реакции требуется энергия; ее поставляет высокоэнергетическая связь ацетил–КоА. В конце цикла щавелево-лимонная кислота регенерируется в прежнем виде. Теперь она способна вступить в реакцию с новой молекулой ацетил–КоА, и цикл повторяется. Суммарно реакция цикла может быть выражена следующим уравнением: ацетил-КоА + 3H O + 3НАД + ФАД + АДФ + Н РО →КоА + 2CO + 3НАД ∙ Н + Н +ФАД ∙ H + АТФ.
Таким образом, в результате распада одной молекулы пировиноградной кислоты в аэробной фазе (декарбоксилирование ПВК и цикла Кребса) выделяется 3CO , 4 НАД ∙ Н + Н , ФАД ∙ H . Суммарно реакцию гликолиза, окислительного декарбоксилирования и цикла Кребса можно записать в следующем виде:
C H O + 6 H O + 10 НАД + 2ФАД →
6CO + 4АТФ + 10 НАД ∙ Н + Н + 2ФАД ∙ H .
Третья стадия – электротранспортная цепь.Пары водородных атомов, отщепляемые от промежуточных продуктов в реакциях дегидрирования при гликолизе и в цикле Кребса, в конце концов, окисляются молекулярным кислородом до H O с одновременным фосфолированием АДФ в АТФ. Происходит это тогда, когда водород, отделившийся от НАД ∙ H и ФАД ∙ H , передается по цепи переносчиков, встроенных во внутреннюю мембрану митохондрий. Пары атомов водорода 2Н можно рассматривать как 2 Н + 2е . Движущей силой транспорта атомов водорода в дыхательной цепи является разность потенциалов.С помощью переносчиков ионы водорода Н переносятся с внутренней стороны мембраны на ее внешнюю сторону, иначе говоря, из матрикса митохондрии в межмембранное пространство (рис. 2).
При переносе пары электронов от над на кислород они пересекают мембрану три раза, и этот процесс сопровождается выделением на внешнюю сторону мембраны шести протонов. На заключительном этапе протоны переносятся на внутреннюю сторону мембраны и акцептируются кислородом:
½ O + 2е → O .
В результате такого переноса ионов Н на внешнюю сторону мембраны митохондрий в перимитохондриальном пространстве создается концентрация их, т.е. возникает электрохимический градиент протонов .
Когда протонный градиент достигает определенной величины, ионы водорода из Н -резервуара движутся по специальным каналам в мембране, и их запас энергии используется для синтеза АТФ. В матриксе они соединяются с заряженными частичками О , и образуется вода: 2Н + О²ˉ → H O.