
- •Доверительный интервал для оценки ско σ нормального распределения. Распределение хи-квадрат.
- •Точечная и интервальная оценка вероятности биномиального распределения с заданной надежностью γ по относительной частоте.
- •Метод моментов для точечной оценки параметров распределения.
- •Метод наибольшего правдоподобия для дискретных и непрерывных случайных величин. Распределение Пуассона. Биномиальное распределение. Показательный закон. Нормальный закон.
- •Числовые характеристики вариационного ряда. Характеристики положения и характеристики рассеивания. Мода, Медиана. Размах варьирования. Коэффициент вариации. Асимметрия. Эксцесс.
- •14. Статистические моменты. Обычные, начальные и центральные эмрирические моменты. Условные эмпирические моменты. Нахождение центральных моментов по условным.
- •15. Метод произведений для вычисления выборочных средней и дисперсии. Сведение первоначальных вариант к равноотстоящим.
- •16. Эмпирические и выравнивающие частоты для дискретных и непрерывных распределений. Примеры.
- •17. Построение нормальной кривой по опытным данным. Оценка отклонения эмпирического распределения от нормального. Асимметрия. Эксцесс.
- •18. Построение статистической функцией распределения. Гистограмма.Назовите числовые характеристики статистического распределения. Дайте определение этих характеристик.
- •Точечная оценка параметра. Свойство точечной оценки. Состоятельная, несмещенная, эффективная оценка. Исправленная дисперсия.
- •Доверительный интервал и доверительная вероятность (надежность). Построение доверительного интервала для математического ожидания случайной величины, распределенной по нормальному закону.
- •§14. Точность оценки, доверительная вероятность (надежность). Доверительный интервал
- •§ 15. Доверительные интервалы для оценки математического ожидания нормального распределения при известном σ
- •Понятие функциональной, статистической и корреляционной зависимости.
- •§ 2. Условные средние
- •§ 3. Выборочные уравнения регрессии
- •Сущность метода наибольшего правдоподобия для нахождения оценок параметров распределений.
- •Сущность метода наименьших квадратов при обработке результатов наблюдений.
- •Формулировка задачи статистической проверки гипотез. Приведите примеры задач на проверку гипотез. Вероятностные данные для применения метода минимума риска к решению задачи проверки гипотез.
- •3.1. Классический метод проверки гипотез
- •Сущность метода минимума риска при решении задачи проверки гипотез. Сформулируйте оптимальное решающее правило. Ошибки первого и второго рода. Сущность метода
- •§ 2. Ошибки первого и второго рода
- •28. Сравнение двух дисперсий нормальных генеральных совокупностей. Распределение Фишера-Снедекора.
- •29. Сравнение исправленной выборочной дисперсии с гипотетической генеральной дисперсей нормальной совокупности. Критерий Стьюдента.
- •Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых известны. Выборки независимы. Функция Лапласа.
- •Сравнение двух вероятностей биномиальных распределений.
- •34. Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам одинакового объема. Критерий Кочрена.
- •35. Определение параметров выборочного уравнения прямой линии среднеквадратичной регрессии по несгрупированным и сгруппированным данным.
- •36. Выборочный коэффициент корреляции. Методика вычисления выборочного коэффициента корреляции. Выборочное корреляционное отношение и его свойство. Мера корреляционной связи.
- •42. Корреляционный анализ. Коррелированность и зависимость случайных величин. Численные характеристики системы двух случайных величин: корреляционный момент и коэффициент корреляции.
- •43. Регрессионный анализ. Линейная регрессия. Прямые линии среднеквадратической зависимости. Коэффициенты регрессии y на X и X на y.
- •[Править]Парная и множественная регрессия
- •Случайные числа. Генератор псевдослучайных чисел. Метод Монте-Карло. Применение метода Монте-Карло для вычисления определенного интеграла.
- •Случайные процессы. Процесс Пуассона и его свойства: стационарность, отсутствие последействия и ординарность.
- •48. Цепь Маркова. Переходная вероятность. Однородная цепь Маркова.Матрица перехода. Равенство Маркова.
- •Определение
- •[Править]Переходная матрица и однородные цепи
- •[Править]Конечномерные распределения и матрица перехода за n шагов
18. Построение статистической функцией распределения. Гистограмма.Назовите числовые характеристики статистического распределения. Дайте определение этих характеристик.
Статистическое распределение выборки
Пусть из генеральной
совокупности извлечена выборка, причем
наблюдалось
раз,
раз ,
раз,
— объем выборки.
Наблюдаемые
значения
называют вариантами,
а последовательность вариант, записанных
в возрастающем порядке — вариационным
рядом. Числа наблюдений называют
частотами,
а их отношения к объему выборки
—
относительными
частотами.
Статическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот. Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (в качестве частоты, соответствующей интервалу, принимают сумму частот, попавших в этот интервал).
Полигон и гистограмма
Полигоном частот
называют ломаную, отрезки которой
соединяют точки
.Для
построения полигона частот на оси
абсцисс откладывают варианты
,
а на оси ординат — соответствующие им
частоты
.
Точки
соединяют отрезками прямых и получают
полигон частот.
Полигоном
относительных частот
называют ломаную, отрезки которой
соединяют точки
.
Гистограммой
частот
называют ступенчатую фигуру, состоящую
из прямоугольников, основаниями которых
служат частичные интервалы длиною h,
а высоты равны отношению
(плотность частоты).
Для построения
гистограммы частот на оси абсцисс
откладывают частичные интервалы, а над
ними проводят отрезки, параллельные
оси абсцисс на расстоянии
.
Площадь i-го
участка гистограммы равна
— Сумме частот вариант i-го
интервала. Площадь гистограммы частот
равна объему выборки.
Гистограммой
относительных частот называют ступенчатую
фигуру, состоящую из прямоугольников,
основаниями которых служат частичные
интервалы длиною h,
а высоты равны отношению
— (плотность относительной частоты)
Площадь i-го
участка гистограммы равна
—относительной частоте вариант i-го
интервала. Площадь гистограммы частот
равна сумме относительных частот
вариант, т.е. единице.
Статистические оценки параметров распределения
Пусть требуется изучить количественный признак генеральной совокупности. Допустим, что из теоретических соображений удалось установить, какое именно распределение имеет признак. Естественно возникает задача оценки параметров, которыми определяется это распределение. Например, если наперед известно, что изучаемый признак распределен в генеральной совокупности нормально, то необходимо оценить (приближенно найти) математическое ожидание и среднее квадратическое отклонение, так как эти два параметра полностью определяют нормальное распределение.
Обычно в распоряжении
исследователя имеются лишь данные
выборки, например, значения количественного
признака
полученные в результате n
наблюдений. Через эти данные и выражают
оцениваемый параметр.
Рассматривая
как независимые случайные величины
можно сказать, что найти статистическую
оценку неизвестного параметра
теоретического распределения — это
значит найти функцию от наблюдаемых
случайных величин, которая и дает
приближенное значение оцениваемого
параметра.
Итак, статистической оценкой неизвестного параметра теоретического распределения называют функцию от наблюдаемых случайных величин.