
- •Доверительный интервал для оценки ско σ нормального распределения. Распределение хи-квадрат.
- •Точечная и интервальная оценка вероятности биномиального распределения с заданной надежностью γ по относительной частоте.
- •Метод моментов для точечной оценки параметров распределения.
- •Метод наибольшего правдоподобия для дискретных и непрерывных случайных величин. Распределение Пуассона. Биномиальное распределение. Показательный закон. Нормальный закон.
- •Числовые характеристики вариационного ряда. Характеристики положения и характеристики рассеивания. Мода, Медиана. Размах варьирования. Коэффициент вариации. Асимметрия. Эксцесс.
- •14. Статистические моменты. Обычные, начальные и центральные эмрирические моменты. Условные эмпирические моменты. Нахождение центральных моментов по условным.
- •15. Метод произведений для вычисления выборочных средней и дисперсии. Сведение первоначальных вариант к равноотстоящим.
- •16. Эмпирические и выравнивающие частоты для дискретных и непрерывных распределений. Примеры.
- •17. Построение нормальной кривой по опытным данным. Оценка отклонения эмпирического распределения от нормального. Асимметрия. Эксцесс.
- •18. Построение статистической функцией распределения. Гистограмма.Назовите числовые характеристики статистического распределения. Дайте определение этих характеристик.
- •Точечная оценка параметра. Свойство точечной оценки. Состоятельная, несмещенная, эффективная оценка. Исправленная дисперсия.
- •Доверительный интервал и доверительная вероятность (надежность). Построение доверительного интервала для математического ожидания случайной величины, распределенной по нормальному закону.
- •§14. Точность оценки, доверительная вероятность (надежность). Доверительный интервал
- •§ 15. Доверительные интервалы для оценки математического ожидания нормального распределения при известном σ
- •Понятие функциональной, статистической и корреляционной зависимости.
- •§ 2. Условные средние
- •§ 3. Выборочные уравнения регрессии
- •Сущность метода наибольшего правдоподобия для нахождения оценок параметров распределений.
- •Сущность метода наименьших квадратов при обработке результатов наблюдений.
- •Формулировка задачи статистической проверки гипотез. Приведите примеры задач на проверку гипотез. Вероятностные данные для применения метода минимума риска к решению задачи проверки гипотез.
- •3.1. Классический метод проверки гипотез
- •Сущность метода минимума риска при решении задачи проверки гипотез. Сформулируйте оптимальное решающее правило. Ошибки первого и второго рода. Сущность метода
- •§ 2. Ошибки первого и второго рода
- •28. Сравнение двух дисперсий нормальных генеральных совокупностей. Распределение Фишера-Снедекора.
- •29. Сравнение исправленной выборочной дисперсии с гипотетической генеральной дисперсей нормальной совокупности. Критерий Стьюдента.
- •Сравнение двух средних нормальных генеральных совокупностей, дисперсии которых известны. Выборки независимы. Функция Лапласа.
- •Сравнение двух вероятностей биномиальных распределений.
- •34. Сравнение нескольких дисперсий нормальных генеральных совокупностей по выборкам одинакового объема. Критерий Кочрена.
- •35. Определение параметров выборочного уравнения прямой линии среднеквадратичной регрессии по несгрупированным и сгруппированным данным.
- •36. Выборочный коэффициент корреляции. Методика вычисления выборочного коэффициента корреляции. Выборочное корреляционное отношение и его свойство. Мера корреляционной связи.
- •42. Корреляционный анализ. Коррелированность и зависимость случайных величин. Численные характеристики системы двух случайных величин: корреляционный момент и коэффициент корреляции.
- •43. Регрессионный анализ. Линейная регрессия. Прямые линии среднеквадратической зависимости. Коэффициенты регрессии y на X и X на y.
- •[Править]Парная и множественная регрессия
- •Случайные числа. Генератор псевдослучайных чисел. Метод Монте-Карло. Применение метода Монте-Карло для вычисления определенного интеграла.
- •Случайные процессы. Процесс Пуассона и его свойства: стационарность, отсутствие последействия и ординарность.
- •48. Цепь Маркова. Переходная вероятность. Однородная цепь Маркова.Матрица перехода. Равенство Маркова.
- •Определение
- •[Править]Переходная матрица и однородные цепи
- •[Править]Конечномерные распределения и матрица перехода за n шагов
Сущность метода наименьших квадратов при обработке результатов наблюдений.
Метод наименьших квадратов (МНК, OLS, Ordinary Least Squares) — один из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным. Метод основан на минимизации суммы квадратов остатков регрессии.
Необходимо отметить, что собственно методом наименьших квадратов можно назвать метод решения задачи в любой области, если решение заключается или удовлетворяет некоторому критерию минимизации суммы квадратов некоторых функций от искомых переменных. Поэтому метод наименьших квадратов может применяться также для приближённого представления (аппроксимации) заданной функции другими (более простыми) функциями, при нахождении совокупности величин, удовлетворяющих уравнениям или ограничениям, количество которых превышает количество этих величин и т.д.
Пример кривой, проведённой через точки, имеющие нормально распределённое отклонение от истинного значения.
Сущность МНК
Пусть задана некоторая (параметрическая) модель вероятностной (регрессионной) зависимости между (объясняемой) переменной y и множеством факторов (объясняющих переменных) x
Формулировка задачи статистической проверки гипотез. Приведите примеры задач на проверку гипотез. Вероятностные данные для применения метода минимума риска к решению задачи проверки гипотез.
Статистической гипотезой называется всякое высказывание о генеральной совокупности (случайной величине), проверяемое по выборке (то есть по результатам наблюдений).
Примеры статистических гипотез:
- математическое ожидание случайной величины равно конкретному числовому значению;
- генеральная совокупность распределена по нормальному закону.
Гипотезы могут быть параметрические (гипотезы о параметрах распределения известного вида) и непараметрические (гипотезы о виде неизвестного распределения).
Различают гипотезы простые, содержащие только одно предположение, и сложные, содержащие более одного предположения.
Например,
гипотеза
- простая;
а
гипотеза
:
,
( где
)
– сложная гипотеза, потому что она
состоит из бесконечного множества
простых гипотез.
Процедура сопоставления гипотезы с выборочными данными называется проверкой гипотезы. Для проверки гипотез используют аналитические и статистические методы.
3.1. Классический метод проверки гипотез
В
соответствии с поставленной задачей и
на основании выборочных данных
формулируется (выдвигается) гипотеза
,
которая называется основной или нулевой.
Одновременно с выдвинутой гипотезой
,
рассматривается противоположная ей
гипотеза
,
которая называется конкурирующей или
альтернативной.
Для
проверки нулевой гипотезы вводят
специально подобранную случайную
величину
,
распределение которой известно и
называют ее критерием.
Поскольку гипотеза для генеральной совокупности принимается по выборочным данным, то она может быть ошибочной. При этом возможны ошибки двух родов.
Ошибка первого рода состоит в том, что отвергается гипотеза , когда она на самом деле верна.
Ошибка второго рода состоит в том, что отвергается альтернативная гипотеза , когда она на самом деле верна.
1) Для определения вероятности ошибки первого рода вводится параметр :
- вероятность того, что будет принята гипотеза , при условии, что верна.
Величину
называют уровнем
значимости.
Обычно
выбирают в пределах
.
2)
Вероятность ошибки второго рода
определяется параметром
:
- вероятность того, что будет принята гипотеза , при условии, что верна.
Величину
,
то есть недопустимость ошибки второго
рода (отвергнуть неверную и принять
верную гипотезу
)
называют мощностью
критерия.