- •Ведение. Развитие энергетики в мире.
- •Раздел 1. Техническая термодинамика.
- •1.1. Предмет термодинамики.
- •1.2. Основные термодинамические параметры состояния.
- •1.3. Виды и формы обмена энергией.
- •1.4. Термодинамическая система. Термодинамическое равновесие.
- •1.5. Теплота и работа.
- •1.6. Уравнение состояния идеальных газов.
- •1.7. Газовая постоянная.
- •8. Смесь идеальных газов.
- •9. Первый закон термодинамики.
- •1.10. Обратимые и необратимые процессы.
- •1.11. Аналитическое выражение первого закона термодинамики.
- •1.12. Энтальпия.
- •1.13. Теплоемкость газов. Энтропия.
- •1.14. Удельная (массовая), объемная и молярная теплоемкость.
- •1.15. Теплоемкость при и . Уравнение Майера.
- •1.16. Средняя теплоемкость.
- •1.17. Термодинамические процессы идеальных газов.
- •18. Второй закон термодинамики.
- •1.19. Круговые термодинамические процессы.
- •1.20. Термодинамический кпд и холодильный коэффициент циклов.
- •1.21. Прямой обратимый цикл Карно.
- •1.22. Обратный обратимый цикл Карно.
- •1.23. Реальные газы. Водяной пар.
- •1.24. И диаграммы водяного пара.
- •1.25. Классификация холодильных установок, хладагенты и требования к ним.
- •1.26. Цикл воздушной холодильной установки.
- •1.27. Паровые компрессионные холодильные установки.
- •1.28. Циклы паротурбинных установок. Циклы Ренкина на насыщенном и перегретом паре.
- •Раздел 2. Теплообменные процессы.
- •2.1. Основные виды переноса теплоты.
- •2.1.1. Передача тепла теплопроводностью. Закон Фурье.
- •2.2. Теплопроводность плоской стенки
- •2.2.1. Теплопроводность цилиндрической стенки трубы.
- •2.3. Конвективный теплообмен. Виды движения теплоносителей.
- •2.4. Критериальные уравнения конвективного теплообмена.
- •2.5. Динамический и тепловой пограничные слои.
- •2.6. Лучистый теплообмен. Поглощение, отражение и испускание лучистой энергии.
- •Раздел 3. Теплообменные аппараты.
- •3.1. Классификация теплообменных аппаратов. Теплоносители.
- •3.1.1. Расчет рекуперативных Теплообменных аппаратов.
- •Раздел 4. Традиционные способы выработки тепловой и электрической энергии.
- •4.1. Энергетика и электрогенерирующие станции
- •4.2. Типы тепловых электростанций. Классификация.
- •4.3. Технологический процесс преобразования химической энергии топлива в электроэнергию на тэс
- •4.4. Преимущества и недостатки тэс
- •4.5. Ресурсы, потребляемые аэс, ее продукция, отходы производства
- •4.6. Представление о ядерных реакторах различного типа
- •4.8. Технологические схемы производства электроэнергии на аэс.
- •4.9. Паровые турбины. Устройство паровой турбины
- •4.9.1. Проточная часть и принцип действия турбины
- •4.9.2. Конструкция основных узлов и деталей паровых турбин
- •4.9.3. Типы паровых турбин и область их использования
- •4.9.4. Основные технические требования к паровым турбинам и их характеристики
- •4.10. Гту. Устройство и принцип действия
- •4.11. Пгу. Их классификация. Достоинства и недостатки.
- •4.12. Котельные установки. Общие понятия и определения
- •4.13. Классификация котельных установок.
- •4.14. Каркас и обмуровка котла.
- •4.15. Тепловой и эксергетический балансы котла Общее уравнение теплового баланса
- •4.16. Схемы подачи воздуха и удаления продуктов сгорания
- •4.16.1 Естественная и искусственная тяга. Принцип работы дымовой трубы.
- •4.17. Сепарационные устройства
- •4.18. Пароперегреватели
- •4.19. Водяные экономайзеры ку. Назначение, конструкция, виды
- •4.20. Воздухоподогреватели ку. Назначение, конструкция, виды
- •4.21. Топливо, состав и технические характеристики топлива. Понятие условного топлива, высшей и низшей теплоты сгорания
- •Раздел 5. Теплоснабжение.
- •5.1. Классификация систем теплоснабжения и тепловых нагрузок
- •5.2. Тепловые сети городов
- •5.3. Теплоэлектроцентрали
- •5.4. Преимущества раздельной и комбинированной выработки электроэнергии и тепла
- •Раздел 6. Нагнетатели.
- •6.1. Классификация нагнетателей. Области применения
- •6.2 .Производительность, напор и давление, создаваемые нагнетателем
- •6.3. Мощность и кпд нагнетателей. Совместная работа насоса и сети
- •Раздел 7. Двигатели внутреннего сгорания.
- •7.1. Классификация двигателей внутреннего сгорания
- •7.2. Принцип работы четырехтактного двигателя
- •7.3. Принцип работы двухтактного двигателя
- •7.4. Индикаторная диаграмма
- •7.5. История развития и параметры работы двс
- •7.6. Индикаторные диаграммы двс.
- •Раздел 8. Нетрадиционные и возобновляемые источники энергии.
- •8.1. Нетрадиционные и возобновляемые источники энергии
- •8.2. Прямое преобразование солнечной энергии
- •8.3. Преобразование солнечной в электрический ток
- •8.4. Гидроэнергетика
- •8.5. Основные принципы использования энергии воды
- •8.6. Гидроэлектростанции
- •8.7. Энергия волн. Энергия приливов (приливные электростанции)
- •8.8. Преобразование тепловой энергии океана в механическую
- •8.9. Ветрогенераторы. Устройство, категории, типы. Преимущества и недостатки
- •8.10. Приливные электростанции
- •8.11. Водородная энергетика
- •Принцип работы топливного элемента:
- •Содержание.
- •Раздел 1. Техническая термодинамика.
- •Раздел 2. Теплообменные процессы
- •Раздел 3. Теплообменные аппараты.
- •Раздел 4. Традиционные способы выработки тепловой и электрической энергии.
Раздел 6. Нагнетатели.
6.1. Классификация нагнетателей. Области применения
Нагнетатели классифицируются:
машины для подачи жидких сред;
машины для подачи газовых сред.
1) Гидравлические машины классифицируются на:
- гидравлические двигатели;
- насосы;
- гидравлические передачи.
Насосы в свою очередь классифицируются:
- лопастные;
- объемные;
- струйные;
-пневматические.
2) Машины для подачи газовых сред делятся (в зависимости от развиваемого ими давления):
- вентилятор;
- газодувка;
- компрессор.
Вентилятор
– машина, перемещающая газовую среду
при степени повышения давления
Газодувка
– машина, работающая при
,
но искусственно неохлаждаемая.
Компрессор сжимает газ при и имеет искусственное (обычно водяное) охлаждение полостей, в которых происходит сжатие газа.
Гидропередачи – конструктивные комбинации, служащие для передачи механической энергии с вала двигателя на вал приводной машины гидравлическим способом.
Гидропередача состоит из насоса, гидродвигателя и системы трубопроводов с устройствами для распределения и регулирования потоков рабочей жидкости.
Насос служит для создания потока жидкой среды.
Гидродвигатели – машины, превращающие энергию потока жидкости в механическую энергию (гидротурбины, гидромоторы).
Подача – объем жидкости, подаваемой нагнетателем в единицу времени.
Подача насоса (м3/с), вентилятора (м3/с, м3/ч).
Напор – энергия, сообщенная единице веса жидкости, прошедшей через насос.
,
[м]. (6.1.1)
Мощность – энергия, затрачиваемая или сообщаемая нагнетателю в единицу времени.
Полезная мощность:
(6.1.2)
Мощность на валу:
,
(6.1.3)
где
-
КПД нагнетателя.
КПД нагнетателя отражает потери мощности в нем.
Потери бывают:
-
механические
;
-
объемные
;
-
гидравлические
.
.
(6.1.4)
Область применения нагнетателей.
В системах теплоснабжения центробежные насосы применяются для подачи воды.
В системах приточно-вытяжных установок зданий применяются вентиляторы.
В теплоэнергетических установках насосы применяются для питания котлоагрегатов, подачи конденсата и т.д.
Сжатый воздух как энергоноситель применяется в различных пневматических устройствах на заводах, в горно - добывающей и нефтяной промышленности, в строительстве. Т.е. компрессоры используются практически во всех отраслях народного хозяйства.
6.2 .Производительность, напор и давление, создаваемые нагнетателем
Основными величинами,, характеризующими работу машин, являются подача, напор и давление, ими развиваемые. Энергия, сообщаемая потоку жидкости или газа машиной, вполне определяется этими величинами и плотностью подаваемой среды. Гидродинамическое и механическое совершенство машины характеризуется ее полным КПД.
Подача — количество жидкости (газа), перемещаемое машиной в единицу времени.
Если подачу измеряют в единицах объема, то ее называют объемной и обозначают Q.
Системой СИ введена массовая подача М, кг/с, — масса жидкости (газа), подаваемой машиной в единицу времени. Очевидно, что
(6.2.1)
где
— плотность среды, кг/м3;
—
объемная подача, м3/с
При отсутствии утечек массовая подача одинакова для всех сечений проточной полости машины независимо от рода подаваемой среды. Объемная подача практически одинакова по всей длине проточной полости только в насосах и приблизительно одинакова в вентиляторах. В компрессорах вследствие существенного повышения давления происходит уменьшение удельного объема газа и объемная подача по длине проточной полости падает.
В расчетах принято исчислять объемную подачу компрессоров при условии всасывания или при нормальных условиях, т. е. при параметрах среды Т= 293 К, — 100 кПа, = 1,2 кг/м3.
Подача насоса (вентилятора, компрессора) зависит от размеров и скоростей движения его рабочих органов и свойств трубопроводной системы, в которую он включен.
По ГОСТ 17398-72 «Насосы. Термины и определения» давление, развиваемое насосом, определяется зависимо- стью:
,
(6.2.2)
где
и
—
соответственно давления на
входе
в насос (начальное) и
на
выходе
из насоса (конечное), Па; р — плотность
среды, подаваемой насосом, кг/м3;
си
и
ск—'
средние
скорости потока на входе и выходе, м/с;
z„
и гк
— высоты
расположения центров входного и выходного
сечений
насоса.
Государственный стандарт устанавливает отчетливое понятие напора как величины, связанной с давлением соотношением:
.
(6.63.3)
Такое понятие напора как величины, исчисляемой в единицах длины, вполне согласуется с основными положениями гидромеханики.
Перейдем от давлений к напорам:
.
(6.2.4)
Полученное равенство определяет полный напор, развиваемый насосом.
Если
пренебречь приростом скоростного
напора
,
значение которого в некоторых случаях
невелико,
то полный напор машины представится
только статической
частью его
,
м:
.
(6.2.5)
Важной
величиной, характеризующей насосы и
вентиляторы
с энергетической стороны, является их
удельная
полезная
работа
,
Дж/кг:
,
(6.2.6)
представляющая собою работу, получаемую потоком от рабочих органов машины, отнесенную к 1 кг массы жидкости (газа).
Работа L, подводимая на вал машины для приведения ее в действие, отнесенная к 1 кг массы подаваемой среды, называется удельной работой машины; она в основном определяет необходимую мощность приводного двигателя машины. Из-за потерь энергии в машине удельная полезная работа машины меньше ее удельной работы.
Удельная работа компрессоров вычисляется особо в зависимости от вида термодинамического процесса, протекающего в компрессорах.
