
- •Ведение. Развитие энергетики в мире.
- •Раздел 1. Техническая термодинамика.
- •1.1. Предмет термодинамики.
- •1.2. Основные термодинамические параметры состояния.
- •1.3. Виды и формы обмена энергией.
- •1.4. Термодинамическая система. Термодинамическое равновесие.
- •1.5. Теплота и работа.
- •1.6. Уравнение состояния идеальных газов.
- •1.7. Газовая постоянная.
- •8. Смесь идеальных газов.
- •9. Первый закон термодинамики.
- •1.10. Обратимые и необратимые процессы.
- •1.11. Аналитическое выражение первого закона термодинамики.
- •1.12. Энтальпия.
- •1.13. Теплоемкость газов. Энтропия.
- •1.14. Удельная (массовая), объемная и молярная теплоемкость.
- •1.15. Теплоемкость при и . Уравнение Майера.
- •1.16. Средняя теплоемкость.
- •1.17. Термодинамические процессы идеальных газов.
- •18. Второй закон термодинамики.
- •1.19. Круговые термодинамические процессы.
- •1.20. Термодинамический кпд и холодильный коэффициент циклов.
- •1.21. Прямой обратимый цикл Карно.
- •1.22. Обратный обратимый цикл Карно.
- •1.23. Реальные газы. Водяной пар.
- •1.24. И диаграммы водяного пара.
- •1.25. Классификация холодильных установок, хладагенты и требования к ним.
- •1.26. Цикл воздушной холодильной установки.
- •1.27. Паровые компрессионные холодильные установки.
- •1.28. Циклы паротурбинных установок. Циклы Ренкина на насыщенном и перегретом паре.
- •Раздел 2. Теплообменные процессы.
- •2.1. Основные виды переноса теплоты.
- •2.1.1. Передача тепла теплопроводностью. Закон Фурье.
- •2.2. Теплопроводность плоской стенки
- •2.2.1. Теплопроводность цилиндрической стенки трубы.
- •2.3. Конвективный теплообмен. Виды движения теплоносителей.
- •2.4. Критериальные уравнения конвективного теплообмена.
- •2.5. Динамический и тепловой пограничные слои.
- •2.6. Лучистый теплообмен. Поглощение, отражение и испускание лучистой энергии.
- •Раздел 3. Теплообменные аппараты.
- •3.1. Классификация теплообменных аппаратов. Теплоносители.
- •3.1.1. Расчет рекуперативных Теплообменных аппаратов.
- •Раздел 4. Традиционные способы выработки тепловой и электрической энергии.
- •4.1. Энергетика и электрогенерирующие станции
- •4.2. Типы тепловых электростанций. Классификация.
- •4.3. Технологический процесс преобразования химической энергии топлива в электроэнергию на тэс
- •4.4. Преимущества и недостатки тэс
- •4.5. Ресурсы, потребляемые аэс, ее продукция, отходы производства
- •4.6. Представление о ядерных реакторах различного типа
- •4.8. Технологические схемы производства электроэнергии на аэс.
- •4.9. Паровые турбины. Устройство паровой турбины
- •4.9.1. Проточная часть и принцип действия турбины
- •4.9.2. Конструкция основных узлов и деталей паровых турбин
- •4.9.3. Типы паровых турбин и область их использования
- •4.9.4. Основные технические требования к паровым турбинам и их характеристики
- •4.10. Гту. Устройство и принцип действия
- •4.11. Пгу. Их классификация. Достоинства и недостатки.
- •4.12. Котельные установки. Общие понятия и определения
- •4.13. Классификация котельных установок.
- •4.14. Каркас и обмуровка котла.
- •4.15. Тепловой и эксергетический балансы котла Общее уравнение теплового баланса
- •4.16. Схемы подачи воздуха и удаления продуктов сгорания
- •4.16.1 Естественная и искусственная тяга. Принцип работы дымовой трубы.
- •4.17. Сепарационные устройства
- •4.18. Пароперегреватели
- •4.19. Водяные экономайзеры ку. Назначение, конструкция, виды
- •4.20. Воздухоподогреватели ку. Назначение, конструкция, виды
- •4.21. Топливо, состав и технические характеристики топлива. Понятие условного топлива, высшей и низшей теплоты сгорания
- •Раздел 5. Теплоснабжение.
- •5.1. Классификация систем теплоснабжения и тепловых нагрузок
- •5.2. Тепловые сети городов
- •5.3. Теплоэлектроцентрали
- •5.4. Преимущества раздельной и комбинированной выработки электроэнергии и тепла
- •Раздел 6. Нагнетатели.
- •6.1. Классификация нагнетателей. Области применения
- •6.2 .Производительность, напор и давление, создаваемые нагнетателем
- •6.3. Мощность и кпд нагнетателей. Совместная работа насоса и сети
- •Раздел 7. Двигатели внутреннего сгорания.
- •7.1. Классификация двигателей внутреннего сгорания
- •7.2. Принцип работы четырехтактного двигателя
- •7.3. Принцип работы двухтактного двигателя
- •7.4. Индикаторная диаграмма
- •7.5. История развития и параметры работы двс
- •7.6. Индикаторные диаграммы двс.
- •Раздел 8. Нетрадиционные и возобновляемые источники энергии.
- •8.1. Нетрадиционные и возобновляемые источники энергии
- •8.2. Прямое преобразование солнечной энергии
- •8.3. Преобразование солнечной в электрический ток
- •8.4. Гидроэнергетика
- •8.5. Основные принципы использования энергии воды
- •8.6. Гидроэлектростанции
- •8.7. Энергия волн. Энергия приливов (приливные электростанции)
- •8.8. Преобразование тепловой энергии океана в механическую
- •8.9. Ветрогенераторы. Устройство, категории, типы. Преимущества и недостатки
- •8.10. Приливные электростанции
- •8.11. Водородная энергетика
- •Принцип работы топливного элемента:
- •Содержание.
- •Раздел 1. Техническая термодинамика.
- •Раздел 2. Теплообменные процессы
- •Раздел 3. Теплообменные аппараты.
- •Раздел 4. Традиционные способы выработки тепловой и электрической энергии.
4.13. Классификация котельных установок.
По назначению котлы делятся на:
Энергетические (для ТЭС)
Отопительно-производственные.
По расположению топок бывают:
C внутренней топкой ( напр. МЗК )
С внешней (нижней) топкой ( напр. ДКВР )
С выносной топкой ( напр. ДЕ )
По способу сжигания топлива:
1) Cлоевые (колосниковые) ― для сжигания твердого кускового топлива.
2) Камерные ― газообразное, жидкое и твердое пылеобразное топливо сжигается во взвешенном состоянии.
По перемещению уходящих газов и воды котлы делятся на:
1) Газотрубные, где продукты сгорания проходят по трубам или паровой трубе, а вокруг труб и паровой трубы движется вода.
2) Водотрубные котлы, в которых вода (пароводяная смесь) проходит по трубам поверхности нагрева котла, а продукты сгорания омывают эти трубы и передают свое тепло воде.
По конструктивным особенностям котлы делятся на:
Цилиндрические
Горизонтально-водотрубные
Вертикально-водотрубные с одним или несколькими барабанами
По движению водяного или пароводяного потока внутри котла:
1) Естественная циркуляция ― осуществляется за счет движущего напора, создаваемого разностью весов столба воды в опускных трубах и столба пароводяной смеси в подъемных трубах .
2) Принудительное движение теплоносителя (осуществляется с помощью искусственных побудителей – насосов), которое в свою очередь осуществляется многократной принудительной циркуляцией и по прямоточной схеме.
В современных отопительных и отопительно-производственных котельных для производства пара используются в основном котлы с естественной циркуляцией, а для производства горячей воды ― котлы с принуди- тельным движением теплоносителя, работающие по прямоточному принципу.
Современные паровые котлы с естественной циркуляцией выполняются из вертикальных труб, расположенных между двумя коллекторами (барабанами). Одна часть труб, называемых “подъемными трубами”, обогревается факелом и продуктами сгорания топлива, а другая, обычно необогреваемая часть труб, находится вне котельного агрегата и носит название “опускные трубы”. В обогреваемых подъемных трубах вода нагревается до кипения, частично испаряется и в виде пароводяной смеси поступает в барабан котла, где происходит ее разделение на пар и воду. По опускным не обогреваемым трубам из верхнего барабана поступает в нижний коллектор (барабан). Кратность циркуляции (отношение расхода воды, проходящего через циркуляционный контур, к расходу пара, производимого в нем) в таких котлах изменяется от 10 до 100.
В паровых котлах с многократной принудительной циркуляцией поверхности нагрева выполняются в виде змеевиков, образующих циркуляционные контуры. Кратность циркуляции в этих котлах изменяется от 5 до 10.
В прямоточных паровых котлах кратность циркуляции составляет единицу, т.е. питательная вода, нагреваясь, последовательно превращается в пароводяную смесь, насыщенный и перегретый пар. В водогрейных котлах вода при движении по контуру циркуляции нагревается за один оборот от начальной до конечной температуры.
По давлению пара котлы бывают:
Низкого давления ( до 10 кг∙с/см2 )
Среднего давления ( 10 ― 100 кг∙с/см2 )
Высокого давления ( 100 ― 225 кг∙с/см2 )
По количеству вырабатываемого пара:
Малой мощности (до 25 т/ч)
Средней мощности (25 ― 120 т/ч)
Высокой мощности (120 ― 220 т/ч)