
- •Ведение. Развитие энергетики в мире.
- •Раздел 1. Техническая термодинамика.
- •1.1. Предмет термодинамики.
- •1.2. Основные термодинамические параметры состояния.
- •1.3. Виды и формы обмена энергией.
- •1.4. Термодинамическая система. Термодинамическое равновесие.
- •1.5. Теплота и работа.
- •1.6. Уравнение состояния идеальных газов.
- •1.7. Газовая постоянная.
- •8. Смесь идеальных газов.
- •9. Первый закон термодинамики.
- •1.10. Обратимые и необратимые процессы.
- •1.11. Аналитическое выражение первого закона термодинамики.
- •1.12. Энтальпия.
- •1.13. Теплоемкость газов. Энтропия.
- •1.14. Удельная (массовая), объемная и молярная теплоемкость.
- •1.15. Теплоемкость при и . Уравнение Майера.
- •1.16. Средняя теплоемкость.
- •1.17. Термодинамические процессы идеальных газов.
- •18. Второй закон термодинамики.
- •1.19. Круговые термодинамические процессы.
- •1.20. Термодинамический кпд и холодильный коэффициент циклов.
- •1.21. Прямой обратимый цикл Карно.
- •1.22. Обратный обратимый цикл Карно.
- •1.23. Реальные газы. Водяной пар.
- •1.24. И диаграммы водяного пара.
- •1.25. Классификация холодильных установок, хладагенты и требования к ним.
- •1.26. Цикл воздушной холодильной установки.
- •1.27. Паровые компрессионные холодильные установки.
- •1.28. Циклы паротурбинных установок. Циклы Ренкина на насыщенном и перегретом паре.
- •Раздел 2. Теплообменные процессы.
- •2.1. Основные виды переноса теплоты.
- •2.1.1. Передача тепла теплопроводностью. Закон Фурье.
- •2.2. Теплопроводность плоской стенки
- •2.2.1. Теплопроводность цилиндрической стенки трубы.
- •2.3. Конвективный теплообмен. Виды движения теплоносителей.
- •2.4. Критериальные уравнения конвективного теплообмена.
- •2.5. Динамический и тепловой пограничные слои.
- •2.6. Лучистый теплообмен. Поглощение, отражение и испускание лучистой энергии.
- •Раздел 3. Теплообменные аппараты.
- •3.1. Классификация теплообменных аппаратов. Теплоносители.
- •3.1.1. Расчет рекуперативных Теплообменных аппаратов.
- •Раздел 4. Традиционные способы выработки тепловой и электрической энергии.
- •4.1. Энергетика и электрогенерирующие станции
- •4.2. Типы тепловых электростанций. Классификация.
- •4.3. Технологический процесс преобразования химической энергии топлива в электроэнергию на тэс
- •4.4. Преимущества и недостатки тэс
- •4.5. Ресурсы, потребляемые аэс, ее продукция, отходы производства
- •4.6. Представление о ядерных реакторах различного типа
- •4.8. Технологические схемы производства электроэнергии на аэс.
- •4.9. Паровые турбины. Устройство паровой турбины
- •4.9.1. Проточная часть и принцип действия турбины
- •4.9.2. Конструкция основных узлов и деталей паровых турбин
- •4.9.3. Типы паровых турбин и область их использования
- •4.9.4. Основные технические требования к паровым турбинам и их характеристики
- •4.10. Гту. Устройство и принцип действия
- •4.11. Пгу. Их классификация. Достоинства и недостатки.
- •4.12. Котельные установки. Общие понятия и определения
- •4.13. Классификация котельных установок.
- •4.14. Каркас и обмуровка котла.
- •4.15. Тепловой и эксергетический балансы котла Общее уравнение теплового баланса
- •4.16. Схемы подачи воздуха и удаления продуктов сгорания
- •4.16.1 Естественная и искусственная тяга. Принцип работы дымовой трубы.
- •4.17. Сепарационные устройства
- •4.18. Пароперегреватели
- •4.19. Водяные экономайзеры ку. Назначение, конструкция, виды
- •4.20. Воздухоподогреватели ку. Назначение, конструкция, виды
- •4.21. Топливо, состав и технические характеристики топлива. Понятие условного топлива, высшей и низшей теплоты сгорания
- •Раздел 5. Теплоснабжение.
- •5.1. Классификация систем теплоснабжения и тепловых нагрузок
- •5.2. Тепловые сети городов
- •5.3. Теплоэлектроцентрали
- •5.4. Преимущества раздельной и комбинированной выработки электроэнергии и тепла
- •Раздел 6. Нагнетатели.
- •6.1. Классификация нагнетателей. Области применения
- •6.2 .Производительность, напор и давление, создаваемые нагнетателем
- •6.3. Мощность и кпд нагнетателей. Совместная работа насоса и сети
- •Раздел 7. Двигатели внутреннего сгорания.
- •7.1. Классификация двигателей внутреннего сгорания
- •7.2. Принцип работы четырехтактного двигателя
- •7.3. Принцип работы двухтактного двигателя
- •7.4. Индикаторная диаграмма
- •7.5. История развития и параметры работы двс
- •7.6. Индикаторные диаграммы двс.
- •Раздел 8. Нетрадиционные и возобновляемые источники энергии.
- •8.1. Нетрадиционные и возобновляемые источники энергии
- •8.2. Прямое преобразование солнечной энергии
- •8.3. Преобразование солнечной в электрический ток
- •8.4. Гидроэнергетика
- •8.5. Основные принципы использования энергии воды
- •8.6. Гидроэлектростанции
- •8.7. Энергия волн. Энергия приливов (приливные электростанции)
- •8.8. Преобразование тепловой энергии океана в механическую
- •8.9. Ветрогенераторы. Устройство, категории, типы. Преимущества и недостатки
- •8.10. Приливные электростанции
- •8.11. Водородная энергетика
- •Принцип работы топливного элемента:
- •Содержание.
- •Раздел 1. Техническая термодинамика.
- •Раздел 2. Теплообменные процессы
- •Раздел 3. Теплообменные аппараты.
- •Раздел 4. Традиционные способы выработки тепловой и электрической энергии.
1.20. Термодинамический кпд и холодильный коэффициент циклов.
Следовательно, для создания теплового двигателя необходимо иметь бесконечно большое количество теплоотдатчиков, теплоприемников и рабочее тело.
На
пути
1-3-2
(рис. 1.19.1)
рабочее тело совершает удельную работу
расширения
,
численно равную пл.
513245,
за счет удельного количества теплоты
.
На
пути
2-7-1
затрачивается удельная работа сжатия
,
численно равная пл.
427154, часть
которой в виде удельного количества
теплоты
отводится
в теплоприемники, а другая часть
расходуется на увеличение внутренней
энергии рабочего тела до начального
состояния.
Эта
работа
.
Соотношение между удельными количествами теплоты и и положительной удельной работой определяется первым законом термодинамики
Так
как в цикле конечное состояние тела
совпадает с начальным, то внутренняя
энергия рабочего тела не изменяется и
поэтому
.
Отношение удельного количества теплоты, превращенного в положительную удельную работу за один цикл, ко всему удельному количеству теплоты, подведенному к рабочему телу, называется термическим коэффициентом полезного действия прямого цикла:
(1.20.1)
Значение
является показателем совершенства
цикла теплового двигателя. Чем больше
,
тем большая часть подведенного удельного
количества теплоты превращается в
полезную работу. Термический КПД цикла
всегда меньше единицы и мог бы быть
равен единице, если бы
или
,
чего осуществить нельзя.
Полученное
уравнение (1.20.1) показывает, что все
подведенное в цикле к рабочему телу
удельное количество теплоты
полностью превратить в удельную работу
невозможно без отвода некоторого
удельного количества теплоты
в теплообменник.
В замкнутом круговом процессе теплота может превратиться в механическую работу только при наличии разности температур между теплоотдатчиками и теплоприемниками. Чем больше эта разность, тем выше КПД цикла теплового двигателя.
Рассмотрим теперь обратный цикл, который проходит в направлении против часовой стрелки и изображается на – диаграмме пл.13261 (рис. 20.1). Расширение рабочего тела в этом цикле совершается при более низкой температуре, чем сжатие, и работа расширения (пл.132451) получается меньше работы сжатия (пл. 162451). Такой цикл может быть осуществлен только при затрате внешней работы.
В
обратном цикле от теплоприемников
подводится к рабочему телу удельное
количество теплоты
и затрачивается удельная работа
,
переходящая в равное удельное количество
теплоты, которые вместе передаются
теплоотдатчикам:
.
Без затраты работы сам собой такой переход невозможен. Степень совершенства обратного цикла определяется так называемым холодильным коэффициентом цикла.
1.21. Прямой обратимый цикл Карно.
Указанный цикл изображен на – диаграмме (рис. 1.21.1)
Рис. 1.21.1
Для
лучшего уяснения порядка осуществления
данного цикла представим себе тепловую
машину, цилиндр которой может быть по
мере надобности как абсолютно
теплопроводным, так и абсолютно
нетеплопроводным. Сообщив рабочему
телу удельное количество теплоты по
изотерме 1-2, совершит работу. Расширяясь
по адиабате 2-3 до температуры теплоприемника
,
совершит работу.
Термический КПД цикла:
.
Подведенное удельное количество теплоты по изотерме 1-2 определяем так:
.
Абсолютное значение отведенного удельного количества теплоты по изотерме 3-4 находим так:
.
Для адиабатного процесса расширения и сжатия соответственно имеем
и
Откуда
или
.
Термический КПД обратимого цикла Карно зависит только от абсолютных температур теплоотдатчика и теплоприемника.
Рис. 1.21.2
Обратимый
цикл Карно, осуществленный в интеграле
температур
и
,
изображается на
–диаграмме
прямоугольником 1234 (рис. 1.21.2)