- •Типы межатомных связей. Влияние на свойства материалов.
- •3) Металлическая связь
- •4) Связь Ван – дер – Вальса
- •Кристаллические и аморфные материалы. Кристаллическое строение. Основные типы кристаллических решеток.
- •Анизотропия кристалла и изотропия кристаллических тел.
- •Идеальное строение металла. Отклонение в строении реальных (технических) металлах и влияние на их свойства.
- •Дефекты кристаллического строения. Кристалл, зерно.
- •Первичная кристаллизация. Влияние скорости охлаждения на структуру и свойства металлов. Модификация.
- •Зерно в сплавах. Влияние величины зерна на свойства. Причины роста зерна и возможности его измельчения.
- •Природа модифицирования и модификаторы металлических сплавов.
- •Сплавы. Основные понятия и термины.
- •Сплавы. Классификация сплавов. Зависимость структуры сплава от положения компонентов в периодической системе д.И. Менделеева.
- •1. Хим. Соединения:
- •2. Твердые растворы:
- •Диаграммы состояния сплавов. Правило отрезков.
- •Диаграммы состояния двойных сплавов (основные типы). Закономерности н.С. Курнакова.
- •Сплавы. Деформируемые и литейные сплавы. Особенности строения и свойства.
- •Диффузионные и Бездиффузионные превращения в металлических сплавах. Влияния на свойства.
- •Диаграммы состояния сплавов, характеризующие превращение в твердом состоянии.
- •Способы упрочнения сплавов.
- •Полиморфное превращение в сплавах. Влияния превращения на структуру и свойства.
- •Перекристаллизация стали. Влияние на структуру и свойства.
- •Дисперсионное твердение. Сплавы, упрочняемые дисперсионным твердением
- •Деформация упругая и пластическая. Упрочнения металлов при пластической деформации.
- •Рекристаллизация сплавов, влияние на структуру и свойства. Температура рекристаллизации по а.А. Бочвару.
- •Наклеп и рекристаллизация. Влияние на структуру и свойства.
- •Холодная и горячая пластические деформации. Влияние на структуру и свойства металлов и сплавов.
- •Диаграмма состояния «Железо – цементит». Превращения в сплавах на основе железа при нагреве и охлаждении.
- •Классификация сплавов по структуре. Свойства.
- •1. Железо:
- •2. Углерод:
- •Стали. Превращения в сталях при нагреве и охлаждении.
- •Равновесные структуры в сталях. Их свойства и условия получения.
- •Чугуны. Классификация. Марки по гост.
- •Белые чугуны. Состав. Свойства. Применение.
- •Графитизация. Причины. Влияние на структуру и свойства.
- •Влияние кремния, марганца и фосфора на свойства чугуна.
- •Чугуны с графитом. Классификация. Области применения.
- •Чугуны с графитом. Марки.
- •Чугуны марок: сч-20, кч-35-10, вч 60-2.
- •Серые чугуны: применение в промышленности.
- •Ковкий чугун. Способы получения. Структура и свойства.
- •Высокопрочный чугун. Способы получения. Структура и свойства.
- •Отбелённые чугуны. Способы получения. Структура и свойства.
- •1.Стали. Влияние вредных примесей. Классификация. Марки.
- •39.2. Стали. Влияние вредных примесей. Классификация. Марки.
- •Ликвация. Причины. Ликвация серы. Красноломкость.
- •Влияние серы на свойства. Красноломкость.
- •Автоматные стали.
- •Стали марок: Сталь 4, 40, 40х, 40нма.
- •Изотермические превращения аустенита. Влияние превращения на структуру и св-ва. Диаграмма.
- •Отжиг стали. Структура, свойства и назначение в промышленности.
- •Нормализация. Структура, св-ва и назначение в промышленности.
- •Закалка стали.
- •Закалка стали. Выбор температур закалки сталей. Структура и свойства закаленных сталей.:
- •Закаливаемость и прокаливаемость стали.
- •Остаточный аустенит. Влияние на свойства. Обработка стали холодом.
- •Деф. Стальных изделий при закалке и возможность ее уменьшения.
- •Внутренние напряжения в стали и деформация изделий при термической обработке. Причины возникновения, влияние на размеры и форму изделий. Способы уменьшения деформации.
- •Ступенчатая закалка .
- •Отпуск стали. Влияние температуры отпуска на превращения, структуру и свойства стали.
- •Улучшающая термическая обработка деталей машин. Структура, свойства и назначение в промышленности.
- •Отпускная хрупкость. Влияние на свойства стали и способы предупреждения.
- •Механические свойства стали. Зависимость от структуры и термической обработки.
- •Классификация легирующих компонентов.
- •2. Классификация с с: по характеру взаим. Делят на 3 группы:
- •Поверхностное упрочнение стальных изделий.
- •1. Химико-термическая обработка:
- •2. Нитроцементация:
- •Цементация стали. Стали для цементации. Процесс цементации, возможности автоматизации.
- •Цементуемые стали. Обработка, структура, свойства. Назначение в промышленности
- •Стали марок: 15, 15х, 12хн3а. Обработка, структура, свойства. Назначение в промышленности
- •Улучшение и улучшаемые стали. Влияние улучшения на структуру и свойства.
- •Азотирование стальных изделий. Область применения в промышленности
- •Закалка с нагревом твч
- •Способы получения поверхностного слоя высокой твердости в стали 15 и стали 45
- •Стали для пружин и их термическая обработка
- •Углеродистые и легированные инструментальные стали. Термическая обработка, структура, свойства и назначение в промышленности
- •Стали для подшипников качения. Состав, термическая обработка, структура и свойства.
- •Конструкционные хромистые хромоникелевые стали. Термическая обработка, свойства и назначение в промышленности
- •Хромо-никелевые стали устойчивые против коррозии
- •Конструкционные стали повышенной прокаливаемости, прочности коррозии
- •Стали устойчивы к коррозии.
- •Хромистые стали легирующие на уровне 2/8
- •Хромоникелевые стали устойчивые против коррозии.
- •Ползучесть. Стали, устойчивые против ползучести.
- •Быстрорежущие стали
- •Твердые сплавы. Способ получения, состав, назначение. Сплавы для обработки чугуна и стали.
- •Быстрорежущие стали и твердые сплавы. Сравнительная характеристика и область применения.
- •Твердые сплавы вк8 и т15к6
- •Дюралюминий.
- •Литейные алюминиевые сплавы. (силумины). Сравнить со свойствами серых чугунов.
- •Сплавы на основе меди. Латуни. Свойства, структура, применение.
- •Сплавы на основе меди латуни л -80 и лс-59-1.
- •Сплавы на медной основе. Бронзы. Строения. Свойства и применение.
- •1. Алюминиевые бронзы.
- •3. Бериллиевые бронзы.
- •Сплавы на медной основе. Оловянные бронзы. (Cu-Sn)
- •Сплавы на основе титана. Свойства и назначение в промышленности.
- •Сплавы на основе титана
- •Полимеры. Типы межатомных связей. Структура термопластичных и термореактивных полимеров. Реакции образования полимеров.
- •Механические свойства полимеров. Состояние аморфной фазы и её влияние на свойства. Ориентационное упрочнение.
- •Старение полимеров.
- •Пластмассы. Классификация и состав пластических масс.
- •Термопластичные пластмассы. Свойства, область применения (на примере полиэтилена и фторопласта).
- •Термореактивные пластмассы. Свойства, область применения (на примере текстолитов).
- •Газонаполненные пластмассы. Строение. Область применения.
Сплавы на основе титана. Свойства и назначение в промышленности.
Титан - металл серого цвета. Температура плавления титана (1668±5)°С.
Титан имеет две аллотропические модификации
существует a-титан
-(до
882ºС)-тетрагон, который кристаллизуется
в гексагональной решетке с периодами
а=0.2951нм и с=0.4684нм (с/м=1.587), при более
высоких температурах - b-титан
(при 900°С плотность
4.32г/см3), имеющий решетку, период
которой а=0.3282нм.
Технический титан изготовляют двух марок: ВТ1-00, ВЕ1-0.
Ti обладает высокой
(1682ºС)
и низким удельным весом (4,5)Устойчив против коррозии, т.к. на поверхности оксидная пленка
Является основным сплавом в судостроении, авиастроении, космической технике.
Плохо обрабатывается резанием, из-за высокой прочности и большой химической активности,(сильный карбидообразующий и реагирует со всеми газами)
Сплавы на основе титана
Легированные в
:
Al, Mn.
прочные
малопластичные
Легированные в
:
Cr, V, Mo.пластичные
малопрочные
Наиболее часто используют сплавы состоящие из a и b фаз.
Изменяя в сплавах содержание Al, Mn и Cr, V с другой стороны, получают такое сочетание a и b фаз, которое лучшим образом удовлетворяет требованиям.
Маркируются:
ВТ1 – сплавы
ВТ15 – сплавы
ВТ7, ВТ8 – сплавы( + )
Сплавы на основе титана получили значительно большее применение, чем технический титан.
Легирование титана Fe, Al, Mn, Cr, Sn, V, Si повышает его прочность (sв, s0.2), но одновременно снижает пластичность (dy) и вязкость (KCU).
Жаропрочность повышают Al, Zr, Mo, а коррозийную стойкость в растворах кислот - Mo, Zr, Nb, Ta и Pd. Титановые сплавы имеют высокую удельную прочность. Как и в железных сплавах, легирующие элементы оказывают большое влияние на полиморфные превращения титана.
Полимеры. Типы межатомных связей. Структура термопластичных и термореактивных полимеров. Реакции образования полимеров.
Полимеры – это сложные высокомолекулярные соединения. У полимеров нет определённой температуры плавления. Отличие в степени насыщения. Предела насыщения не существует. Полимеры обладают очень высокой вязкостью, высокой молекулярной массой. Полимеры – это макромолекулы, которые состоят из большого числа небольших молекул, которые называются мономерами. Бутадиен – мономер. Бутадиен + … + бутадиен (4000 раз) → полибутадиен (искусственный каучук) [–CH2–CH=CH–(–n)CH2–], n – степень полимеризации. Полимеры получают либо полимеризацией, либо поликонденсацией. Процесс, при котором полимер получается вследствие соединения мономеров друг с другом, наз. полимеризацией. Поликонденсация - это процесс образования полимера в результате хим. реакции исходных веществ с получением нового в-ва, структура которого отличается от исходной. Термопласты, при повышении температуры размягчаются, им придаётся опред. форма, которую они сохраняют при охлаждении, получаются полимеризацией. Реактопласты, при повышении температуры претерпевают хим. изменения и превращение в неплавкую массу, получаются полимеризацией и поликонденсацией. Полимеры по структуре макромолекул:
.
Механические свойства полимеров. Состояние аморфной фазы и её влияние на свойства. Ориентационное упрочнение.
Свойства полимеров определяются: природой мономера, молекулярной массой полимера, структурой полимера (кристаллический полимер или аморфный полимер), температурой нагрева. Есть пластическое и хрупкое разрушение.
Фазовые переходы аморфных полимеров: стеклообразное состояние → (t стеклования) высокоэластическое состояние (каучук) → (t текучести) расплав полимера. В стеклообразном состоянии полимеры не обладают ни сегментальной, ни молекулярной подвижностью. Это состояние хар-ся только колебательным движением атомов. Стеклообразное состояние – это твёрдое и хрупкое состояние. В высокоэластическом состоянии полимер обладает сегментальной подвижностью, при этом сегменты цепи обладают значительной свободой в движении, но в то же время перемещение макромолекул запрещено. В высокоэластическом состоянии полимеры похожи на жидкости с включёнными в них твёрдоподобными областями. Это состояние хар-ся высокой вязкостью и претерпевает вязко-упругую деформацию. t перехода из стеклообр. сост. в высокоэласт. наз. t стеклования. При дальнейшем нагревании полимер начинает течь. t, при которой происходит переход из высокоэласт. сост. в вязко-текучее, наз. t текучести. Из-за отсутствия в полимерах истинной кристал. решётки процесса плавления как такового в аморфных полимерах не существует.
Ориентационное упрочнение справедливо как для аморфных, так и для кристаллических полимеров. Оно состоит в том, что все макромолекулы ориентированы в одном направлении и имеют в этом направлении большую прочность и больший модуль упругости (E, МПа, хар-ет жёсткость системы). Оно достигается вытяжкой либо в одном направлении, либо в двух направлениях.
