
- •Типы межатомных связей. Влияние на свойства материалов.
- •3) Металлическая связь
- •4) Связь Ван – дер – Вальса
- •Кристаллические и аморфные материалы. Кристаллическое строение. Основные типы кристаллических решеток.
- •Анизотропия кристалла и изотропия кристаллических тел.
- •Идеальное строение металла. Отклонение в строении реальных (технических) металлах и влияние на их свойства.
- •Дефекты кристаллического строения. Кристалл, зерно.
- •Первичная кристаллизация. Влияние скорости охлаждения на структуру и свойства металлов. Модификация.
- •Зерно в сплавах. Влияние величины зерна на свойства. Причины роста зерна и возможности его измельчения.
- •Природа модифицирования и модификаторы металлических сплавов.
- •Сплавы. Основные понятия и термины.
- •Сплавы. Классификация сплавов. Зависимость структуры сплава от положения компонентов в периодической системе д.И. Менделеева.
- •1. Хим. Соединения:
- •2. Твердые растворы:
- •Диаграммы состояния сплавов. Правило отрезков.
- •Диаграммы состояния двойных сплавов (основные типы). Закономерности н.С. Курнакова.
- •Сплавы. Деформируемые и литейные сплавы. Особенности строения и свойства.
- •Диффузионные и Бездиффузионные превращения в металлических сплавах. Влияния на свойства.
- •Диаграммы состояния сплавов, характеризующие превращение в твердом состоянии.
- •Способы упрочнения сплавов.
- •Полиморфное превращение в сплавах. Влияния превращения на структуру и свойства.
- •Перекристаллизация стали. Влияние на структуру и свойства.
- •Дисперсионное твердение. Сплавы, упрочняемые дисперсионным твердением
- •Деформация упругая и пластическая. Упрочнения металлов при пластической деформации.
- •Рекристаллизация сплавов, влияние на структуру и свойства. Температура рекристаллизации по а.А. Бочвару.
- •Наклеп и рекристаллизация. Влияние на структуру и свойства.
- •Холодная и горячая пластические деформации. Влияние на структуру и свойства металлов и сплавов.
- •Диаграмма состояния «Железо – цементит». Превращения в сплавах на основе железа при нагреве и охлаждении.
- •Классификация сплавов по структуре. Свойства.
- •1. Железо:
- •2. Углерод:
- •Стали. Превращения в сталях при нагреве и охлаждении.
- •Равновесные структуры в сталях. Их свойства и условия получения.
- •Чугуны. Классификация. Марки по гост.
- •Белые чугуны. Состав. Свойства. Применение.
- •Графитизация. Причины. Влияние на структуру и свойства.
- •Влияние кремния, марганца и фосфора на свойства чугуна.
- •Чугуны с графитом. Классификация. Области применения.
- •Чугуны с графитом. Марки.
- •Чугуны марок: сч-20, кч-35-10, вч 60-2.
- •Серые чугуны: применение в промышленности.
- •Ковкий чугун. Способы получения. Структура и свойства.
- •Высокопрочный чугун. Способы получения. Структура и свойства.
- •Отбелённые чугуны. Способы получения. Структура и свойства.
- •1.Стали. Влияние вредных примесей. Классификация. Марки.
- •39.2. Стали. Влияние вредных примесей. Классификация. Марки.
- •Ликвация. Причины. Ликвация серы. Красноломкость.
- •Влияние серы на свойства. Красноломкость.
- •Автоматные стали.
- •Стали марок: Сталь 4, 40, 40х, 40нма.
- •Изотермические превращения аустенита. Влияние превращения на структуру и св-ва. Диаграмма.
- •Отжиг стали. Структура, свойства и назначение в промышленности.
- •Нормализация. Структура, св-ва и назначение в промышленности.
- •Закалка стали.
- •Закалка стали. Выбор температур закалки сталей. Структура и свойства закаленных сталей.:
- •Закаливаемость и прокаливаемость стали.
- •Остаточный аустенит. Влияние на свойства. Обработка стали холодом.
- •Деф. Стальных изделий при закалке и возможность ее уменьшения.
- •Внутренние напряжения в стали и деформация изделий при термической обработке. Причины возникновения, влияние на размеры и форму изделий. Способы уменьшения деформации.
- •Ступенчатая закалка .
- •Отпуск стали. Влияние температуры отпуска на превращения, структуру и свойства стали.
- •Улучшающая термическая обработка деталей машин. Структура, свойства и назначение в промышленности.
- •Отпускная хрупкость. Влияние на свойства стали и способы предупреждения.
- •Механические свойства стали. Зависимость от структуры и термической обработки.
- •Классификация легирующих компонентов.
- •2. Классификация с с: по характеру взаим. Делят на 3 группы:
- •Поверхностное упрочнение стальных изделий.
- •1. Химико-термическая обработка:
- •2. Нитроцементация:
- •Цементация стали. Стали для цементации. Процесс цементации, возможности автоматизации.
- •Цементуемые стали. Обработка, структура, свойства. Назначение в промышленности
- •Стали марок: 15, 15х, 12хн3а. Обработка, структура, свойства. Назначение в промышленности
- •Улучшение и улучшаемые стали. Влияние улучшения на структуру и свойства.
- •Азотирование стальных изделий. Область применения в промышленности
- •Закалка с нагревом твч
- •Способы получения поверхностного слоя высокой твердости в стали 15 и стали 45
- •Стали для пружин и их термическая обработка
- •Углеродистые и легированные инструментальные стали. Термическая обработка, структура, свойства и назначение в промышленности
- •Стали для подшипников качения. Состав, термическая обработка, структура и свойства.
- •Конструкционные хромистые хромоникелевые стали. Термическая обработка, свойства и назначение в промышленности
- •Хромо-никелевые стали устойчивые против коррозии
- •Конструкционные стали повышенной прокаливаемости, прочности коррозии
- •Стали устойчивы к коррозии.
- •Хромистые стали легирующие на уровне 2/8
- •Хромоникелевые стали устойчивые против коррозии.
- •Ползучесть. Стали, устойчивые против ползучести.
- •Быстрорежущие стали
- •Твердые сплавы. Способ получения, состав, назначение. Сплавы для обработки чугуна и стали.
- •Быстрорежущие стали и твердые сплавы. Сравнительная характеристика и область применения.
- •Твердые сплавы вк8 и т15к6
- •Дюралюминий.
- •Литейные алюминиевые сплавы. (силумины). Сравнить со свойствами серых чугунов.
- •Сплавы на основе меди. Латуни. Свойства, структура, применение.
- •Сплавы на основе меди латуни л -80 и лс-59-1.
- •Сплавы на медной основе. Бронзы. Строения. Свойства и применение.
- •1. Алюминиевые бронзы.
- •3. Бериллиевые бронзы.
- •Сплавы на медной основе. Оловянные бронзы. (Cu-Sn)
- •Сплавы на основе титана. Свойства и назначение в промышленности.
- •Сплавы на основе титана
- •Полимеры. Типы межатомных связей. Структура термопластичных и термореактивных полимеров. Реакции образования полимеров.
- •Механические свойства полимеров. Состояние аморфной фазы и её влияние на свойства. Ориентационное упрочнение.
- •Старение полимеров.
- •Пластмассы. Классификация и состав пластических масс.
- •Термопластичные пластмассы. Свойства, область применения (на примере полиэтилена и фторопласта).
- •Термореактивные пластмассы. Свойства, область применения (на примере текстолитов).
- •Газонаполненные пластмассы. Строение. Область применения.
Деф. Стальных изделий при закалке и возможность ее уменьшения.
Внутренние напряжения в стали и деформация изделий при термической обработке. Причины возникновения, влияние на размеры и форму изделий. Способы уменьшения деформации.
Остаточные напряжения – напряжения которые сохраняются в теле без внешней нагрузки после закалки.
Если на поверхности возникают сжимающие напряжения (полезные), а внутри растягивающие.
Под воздействием закалочных напряжений наблюдают деформацию и коробление.
Деформация – изменение объема изделия.
Коробление - изменение угловых и линейных размеров.
Напряжения которые их вызывают, делятся:
Термические
Отвечают за коробление изделий.
Возникают при охлаждении или нагреве изделий благодаря неодинаковой скорости охлаждения (нагрева) по объему изделия.
Поверхность изделия охлаждается значительно быстрее чем его центр, поэтому возникает градиент напряжений, который вызывает коробление.
Фазовые
Образуются благодаря тому, что отдельные
фазы имеют одинаковый удельный объем
.
- объем стального изделия увеличивается
на 1% (чем больше углерода, тем больше
размеры в уд.V). При этом
образуются большие остаточные напряжения.
Способы уменьшения деформации и коробления.
Использовать вместо углеродистых сталей (конструкционных, инструментальных), легированные стали.
В этом случае возможно охлаждение стального изделия не в воде, а с меньшей скоростью в масле.
В воде (Ст40) |
В масле (Ст 40Х) |
|
|
Ступенчатая закалка .
Деталь охлаждается в закалочной среде, имеющей температуру выше мартеиситной точки для данной стали. При охлаждении и выдержке в этой среде закаливаемая деталь должна приобрести во всех точках сечения температуру закалочной ванны. Затем следует окончательное, обычно медленное, охлаждение, во время которого и происходит формирование структуры, т. е. превращение аустенита в мартенсит. Разбивка охлаждения на две ступени уменьшает внутренние напряжения I рода, поэтому уменьшается и закалочная деформация.
При ступенчатой закалке, а также при закалке в двух средах длинномерных и плоских изделий (преимущественно инструмента) производится так называемая правка или рихтовка, т. е. устранение коробления, вызванного термическими напряжениями при первом быстром охлаждении. Но здесь надо точно выбрать температуру деформирования. Она должна лежать между точками MD и МН когда деформация легко осуществляется в связи с образованием мартенсита (используя так называемую мартенситную сверхпластичность).
0-1 – быстрое охлаждение (на воздухе) возникают термические напряжения.
1-2 – выдержка. Эти термические напряжения выравниваются (вместе с температурой).
2-3 – замедленное охлаждение на воздухе до цеховой температуры в интервале «МН – МХ» уменьшается амплитудное значение фазовых напряжений (т.к. они растягиваются во времени).
Отпуск стали. Влияние температуры отпуска на превращения, структуру и свойства стали.
Отпуск – термическая операция,
охлаждение до температуры
Цель: получить заданные структуру и свойства стали, из которых производиться изделие.
Перед отпуском сталь находиться в закаленном состоянии и ее основная фаза мартенсит.
Мартенсит – пересыщ. и поэтому неравновесный твердый раствор углерода в .
Твердость зависит от содержания углерода. При нагреве мартенсита эта фаза стремиться перейти из неравновесного состояния в равновесное.
Этот переход реализуется лишь на пути выделения атомов углерода из кристаллической решетки мартенсита, т.е. на пути уменьшения той причины, вызывающей неравновесность мартенсита.
Атомы углерода выделяются и взаимодействуют с атомами железа и образуют сначала в виде мелких зародышей – центров кристаллизации, имеют округлую форму. Они растут – коагуляция. С повышением температуры, зерна цементита растут.
Т.о. одна фаза (М) в процессе отпуска распадается на две:
1)Зерна цементита (выделяются)
2)Феррит (остается).
После этого с повышением температуры отпуска снимаются остаточные закалочные напряжения и повышается прочность.
Диаграмма отпуска:
У
дарная
вязкость характеризует сопротивление
ударам.
Низкотемпературный (низкий) отпуск проводят с нагревом до 250. Цель - снижение внутренних напряжений. Мартенсит закалки переходит в мартенсит отпуска. Высокая твердость и износостойкость сохраняются. Сохраняется также низкая ударная вязкость. Данному отпуску подвергается металлорежущий инструмент.
Среднетемпературный (средний) отпуск проводится при температурах 350-500С, структура мартенсита переходит в троостит отпуска. Такой отпуск обеспечивает наиболее высокий предел упругости и несколько повышает вязкость. Такой отпуск применяется для рессор, пружин, а также инструмента, испытывающего ударные нагрузки.
Высокотемпературный (высокий) отпуск проводят при температуре 500-680С, структура стали после высоко отпуска – сорбит отпуска. Высокий отпуск создает наилучшие соотношения прочности и вязкости.