
- •В каком случае вектор b можно назвать линейной комбинацией векторов a1,..., ап?
- •Ввести необходимые векторы и матрицы и записать в векторно-матричной форме следующую задачу (дана задача лп, записанная в обычном виде).
- •9. Дайте определения ранга матрицы размером т*n. Определите ранг матрицы (матрица задана)
- •12.Единичная матрица: определение, формулы для элементов
- •13. Обратная матрица: определение, условия существования обратной матрицы
- •14. Постановка линейной производственной задачи, смысл переменных, векторов и матриц,допустимый и оптимальный план, математическая модель
- •Постановка общей задачи математического программирования. Основные понятия
- •Вектор-градиент, линия уровня, область допустимых решений в задаче лп. Геометрическая интерпретация задачи линейного программирования.
- •Многошаговые процессы решений в экономике. Суть метода динамического программирования. Параметр состояния и функция состояния системы, рекуррентные соотношения.
- •Матричные игры с нулевой суммой, смысл коэффициентов платежной матрицы, примеры матричных игр.
- •Основные понятия в теории графов: Дуги, вершины в ориентированном и неориентированном графе. Примеры применения теории графов в экономике.
- •Экономический смысл двойственной задачи к модели оптимального планирования производства. Математическая модель задачи определения расчетных оценок ресурсов
- •Сформулировать и доказать критерий оптимальности решения задачи линейного программирования при отыскании максимума линейной функции симплексным методом.
- •22. Сформулировать и доказать критерий оптимальности решения задачи линейного программирования при отыскании минимума линейной функции симплексным методом.
- •В каком случае базисное оптимальное решение задачи линейного программирования будет ее единственным оптимальным решением? Ответ обосновать
- •В каком случае задача оптимального производственного планирования не имеет оптимального плана? Ответ обосновать
- •В каком случае при решении задачи линейного программирования симплекс-методом значения линейной функции двух последовательных планов могут совпасть? Ответ обосновать
- •Сформулировать и доказать условие неограниченности целевой функции на множестве допустимых решений при решении задачи линейного программирования симплекс-методом.
- •28. Сформулировать теорему о связи решений исходной и вспомогательной задач при решении задачи линейного программирования методом искусственного базиса.
- •Доказать, что если при решении задачи линейного программирования:
- •30. Для задачи линейного программирования:
- •Правила выбора ключевого столбца и строки при решении задачи лп симплексным методом, последствия неправильного выбора
- •32.Введение балансовых переменных в систему ограничений задачи лп: цель и правило введения
- •33.Введение искусственных переменных в систему ограничений задачи лп при решении задачи лп методом искусственного базиса: цель и правило введения
- •34. В каком случае процесс решения задачи лп симплекс-методом является конечным?
- •35. В каких задачах применяется симплекс-метод?
- •36. Что представляет собой симплексная таблица?
- •37. Запишите симметричную пару двойственных задач линейного программирования.
- •38. Сформулируйте правила составления задачи, двойственной к данной задаче линейного программирования с ограничениями — неравенствами.
- •39. Матричная запись пары двойственных задач лп (симметричная пара задач с ограничениями-неравенствами и несимметричная пара, где в одной из задач ограничения имеют вид равенств)
- •Сформулировать и доказать основное неравенство теории двойственности линейного программирования.
- •Сформулировать и доказать малую теорему двойственности.
- •42. Сформулировать и доказать теорему о достаточном условии оптимальности решений пары двойственных задач линейного программирования.
- •43.Сформулировать и доказать первую основную теорему двойственности. В чем состоит экономическое содержание первой основной теоремы двойственности?
- •44.Сформулировать и доказать вторую основную теорему двойственности. В чем состоит экономическое содержание второй основной теоремы двойственности?
- •Сформулировать и доказать третью основную теорему двойственности. В чем состоит экономическое содержание третьей основной теоремы двойственности?
- •46.В чем состоит условие устойчивости двойственных оценок?
- •47.Сформулируйте задачу о расшивке узких мест производства и постройте ее математическую модель.
- •48.Постановка и математическая модель замкнутой транспортной задачи, число базисных неизвестных. Записать основные свойства этой модели.
- •51.Записать правила построения первого базисного решения замкнутой транспортной задачи по методу северо-западного угла.
- •52.Записать правила построения первого базисного решения замкнутой транспортной задачи по методу минимального элемента в матрице тарифов.
- •54.Правила расчета потенциалов поставщиков и потребителей в транспортной задаче. Расчет оценочных коэффициентов для свободных клеток транспортной задачи. Условие оптимальности базисного решения.
- •55.Записать определение цикла пересчета в транспортной таблице. Использование цикла пересчета для получения нового (улучшенного) базисного решения.
- •56.Записать алгоритм решения транспортной задачи (перечислить по порядку этапы решения). Обосновать конечность метода потенциалов решения транспортной задачи.
- •57.Объяснить смысл перевозок от фиктивного поставщика или к фиктивному потребителю в оптимальном решении транспортной задачи.
- •58.Что такое целочисленное линейное программирование? Допустимое множество задачи цлп.
- •59.Что такое параметрическое линейное программирование? Где может находиться параметр?
- •60.Что такое многокритериальная задача?
- •61.Что такое рекорд в методе ветвей и границ?
- •62.Приведите пример задачи целочисленного линейного программирования
- •Приведите пример задачи параметрического линейного программирования.
- •64.Приведите пример многокритериальной задачи
- •65.Сформулируйте условие окончания ветвления при решении задач методом виг.
- •66.Что такое решение, оптимальное по Парето в многокритериальной задаче.
- •67.Объясните, почему метод виг принадлежит к методам отсечения?
- •68. Почему нельзя решать задачу целочисленного лп, решив ее сначала как обычную задачу лп без учета целочисленности, а затем округлив полученное решение?
- •Что такое решение, оптимальное по Парето, в многокритериальной оптимизации?
- •Описать метод ветвей и границ
- •Метод динамического программирования, функция состояния, уравнение Беллмана
- •Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •73.Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •74.Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •75. Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •76. Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •В чем отличие «условий неопределенности» от «вероятностных условий». Что такое полная неопределенность и частичная неопределенность?
- •Что такое платежная матрица и матрица рисков, экономический смысл платежной матрицы
- •Как по платежной матрице составить матрицу рисков?
- •Как рекомендуется принимать решение «по Вальду»?
- •Как рекомендуется принимать решение «по Сэвиджу»?
- •Как рекомендуется принимать решение «по Гурвицу»?
- •Что такое правило «розового оптимизма»?
- •Как находится риск финансовой операции как среднее квадратическое?
- •Что такое доминирование финансовых операций?
- •Что такое взвешивающая формула?
- •Каков экономический смысл среднего ожидаемого дохода финансовой операции? Формула для его расчета
- •Как рекомендуется принимать решение по критерию наибольшего среднего ожидаемого дохода?
- •Верхняя и нижняя цена игры в матричной игре в чистых стратегиях, их нахождение
- •Оптимальные стратегии в матричной игре в чистых стратегиях, условие их существования, седловая точка матрицы
- •Дана матрица, один из элементов которой является параметром. Найти область значений параметра (с доказательством!), при которых заданные стратегии игроков будут оптимальными .
Сформулировать и доказать критерий оптимальности решения задачи линейного программирования при отыскании максимума линейной функции симплексным методом.
Базисное решение является оптимальным тогда и только тогда, когда в уравнении среди коэффициентов Δ j при неизвестных нет ни одного отрицательного, т.е оценки Δ j ≥ 0. Так как двойственные оценки – это взятые с противоположным знаком коэффициенты выражения ц.ф. через свободные неизвестные. Значит, сами эти коэффициенты ≤ 0. Поэтому, как только любая из свободных неизвестных примет положительное значение – целевая функция уменьшается. А это и означает, что она максимальна при нулевых значениях свободных неизвестных, т.е. для данного базисного решения.
Допустим необходимо максимизировать целевую функцию L=c1x1+c2x2+...cnxn (1), при условиях:
x1
+ g1,m+1xm+1
+
... + g1nxn
= h1,
x2 + g2,m+1 xm+1 + ... + g2nxn = h2, (2)
... ... ... ...
xm + gm,m+1 xm+1 + ... + gmnxn = hm
и xj≥0, j = 1,2,...n (3).
Для решения такой задачи применяется симплексный метод линейного программирования.
Одним из допустимых решений задачи ЛП будет базисное неотрицательное решение системы (2): x1=h1, x2=h2,...xm=hm, xm+1=0,...xn=0 (4), ему соответствует значение целевой ф-ии равное:
L0=c1оh1+c2h2+...cmhm+cm+1*0+...+cn*0
=
ci
hi
(5).
Надо исследовать, является ли базисное неотрицательное решение (4) оптимальным,т.е. является ли значение (5) наименьшим из всех возможных значений целевой ф-ии (1), отвечающих различным неотрицательным решениям системы (2).
Учитывая, что система уравнений (2) имеет предпочитаемый вид, находим для нее общее решение: xi=hi-gi,m+1xm+1-...-ginxn, i=1,2,...,m (6). Если свободным неизвестным придавать какие-нибудь неотрицательные значения, то будем получать различные решения системы (2), среди которых нас интересуют только неотрицательные. Подставляя их компоненты в линейную форму (1), можно подсчитать соответствующие значения целевой функции. Очевидно, чтобы легче было следить за поведением целевой функции, целесообразно выразить ее только через свободные неизвестные.
Если переписать выражение (1) в виде:
- L+c1x1+c2x2+...cmxm+ cm+1xm+1+...+cnxn=0 (7). Для того чтобы исключить базисные неизвестные из этого уравнения, достаточно умножить первое уравнение системы (2) на c1, второе на c2 и т.д., сложить полученные произведения и из результата вычесть уравнение (7). Получим L+∆m+1xm+1+...+∆nxn=L0 (8), где ∆j = c1g1j + c2g2j + ... + cmgmj - cj , j=1,2,...n (9) или ∆j = zj - cj, zj= cigij, j=1,2,...n (9a).
Из выражения следует, что базисное решение x1=h1, x2=h2,...xm=hm, xm+1=0,...xn=0 (2) является оптимальным решением задачи ЛП
Базисное решение является оптимальным решением задачи ЛП тогда и только тогда, когда в уравнении среди коэффициентов при неизвестных нет ни одного отрицательного, т. е. условие оптимальности имеет вид ∆j≥0 , j=1,2,…,n.
Если же хотя бы один из коэффициентов при свободных неизвестных равен нулю, то будут и небазисные оптимальные решения. Очевидно, оптимальных решений будет еще больше, если среди коэффициентов при свободных неизвестных в уравнении (8) окажется несколько нулевых.