
- •В каком случае вектор b можно назвать линейной комбинацией векторов a1,..., ап?
- •Ввести необходимые векторы и матрицы и записать в векторно-матричной форме следующую задачу (дана задача лп, записанная в обычном виде).
- •9. Дайте определения ранга матрицы размером т*n. Определите ранг матрицы (матрица задана)
- •12.Единичная матрица: определение, формулы для элементов
- •13. Обратная матрица: определение, условия существования обратной матрицы
- •14. Постановка линейной производственной задачи, смысл переменных, векторов и матриц,допустимый и оптимальный план, математическая модель
- •Постановка общей задачи математического программирования. Основные понятия
- •Вектор-градиент, линия уровня, область допустимых решений в задаче лп. Геометрическая интерпретация задачи линейного программирования.
- •Многошаговые процессы решений в экономике. Суть метода динамического программирования. Параметр состояния и функция состояния системы, рекуррентные соотношения.
- •Матричные игры с нулевой суммой, смысл коэффициентов платежной матрицы, примеры матричных игр.
- •Основные понятия в теории графов: Дуги, вершины в ориентированном и неориентированном графе. Примеры применения теории графов в экономике.
- •Экономический смысл двойственной задачи к модели оптимального планирования производства. Математическая модель задачи определения расчетных оценок ресурсов
- •Сформулировать и доказать критерий оптимальности решения задачи линейного программирования при отыскании максимума линейной функции симплексным методом.
- •22. Сформулировать и доказать критерий оптимальности решения задачи линейного программирования при отыскании минимума линейной функции симплексным методом.
- •В каком случае базисное оптимальное решение задачи линейного программирования будет ее единственным оптимальным решением? Ответ обосновать
- •В каком случае задача оптимального производственного планирования не имеет оптимального плана? Ответ обосновать
- •В каком случае при решении задачи линейного программирования симплекс-методом значения линейной функции двух последовательных планов могут совпасть? Ответ обосновать
- •Сформулировать и доказать условие неограниченности целевой функции на множестве допустимых решений при решении задачи линейного программирования симплекс-методом.
- •28. Сформулировать теорему о связи решений исходной и вспомогательной задач при решении задачи линейного программирования методом искусственного базиса.
- •Доказать, что если при решении задачи линейного программирования:
- •30. Для задачи линейного программирования:
- •Правила выбора ключевого столбца и строки при решении задачи лп симплексным методом, последствия неправильного выбора
- •32.Введение балансовых переменных в систему ограничений задачи лп: цель и правило введения
- •33.Введение искусственных переменных в систему ограничений задачи лп при решении задачи лп методом искусственного базиса: цель и правило введения
- •34. В каком случае процесс решения задачи лп симплекс-методом является конечным?
- •35. В каких задачах применяется симплекс-метод?
- •36. Что представляет собой симплексная таблица?
- •37. Запишите симметричную пару двойственных задач линейного программирования.
- •38. Сформулируйте правила составления задачи, двойственной к данной задаче линейного программирования с ограничениями — неравенствами.
- •39. Матричная запись пары двойственных задач лп (симметричная пара задач с ограничениями-неравенствами и несимметричная пара, где в одной из задач ограничения имеют вид равенств)
- •Сформулировать и доказать основное неравенство теории двойственности линейного программирования.
- •Сформулировать и доказать малую теорему двойственности.
- •42. Сформулировать и доказать теорему о достаточном условии оптимальности решений пары двойственных задач линейного программирования.
- •43.Сформулировать и доказать первую основную теорему двойственности. В чем состоит экономическое содержание первой основной теоремы двойственности?
- •44.Сформулировать и доказать вторую основную теорему двойственности. В чем состоит экономическое содержание второй основной теоремы двойственности?
- •Сформулировать и доказать третью основную теорему двойственности. В чем состоит экономическое содержание третьей основной теоремы двойственности?
- •46.В чем состоит условие устойчивости двойственных оценок?
- •47.Сформулируйте задачу о расшивке узких мест производства и постройте ее математическую модель.
- •48.Постановка и математическая модель замкнутой транспортной задачи, число базисных неизвестных. Записать основные свойства этой модели.
- •51.Записать правила построения первого базисного решения замкнутой транспортной задачи по методу северо-западного угла.
- •52.Записать правила построения первого базисного решения замкнутой транспортной задачи по методу минимального элемента в матрице тарифов.
- •54.Правила расчета потенциалов поставщиков и потребителей в транспортной задаче. Расчет оценочных коэффициентов для свободных клеток транспортной задачи. Условие оптимальности базисного решения.
- •55.Записать определение цикла пересчета в транспортной таблице. Использование цикла пересчета для получения нового (улучшенного) базисного решения.
- •56.Записать алгоритм решения транспортной задачи (перечислить по порядку этапы решения). Обосновать конечность метода потенциалов решения транспортной задачи.
- •57.Объяснить смысл перевозок от фиктивного поставщика или к фиктивному потребителю в оптимальном решении транспортной задачи.
- •58.Что такое целочисленное линейное программирование? Допустимое множество задачи цлп.
- •59.Что такое параметрическое линейное программирование? Где может находиться параметр?
- •60.Что такое многокритериальная задача?
- •61.Что такое рекорд в методе ветвей и границ?
- •62.Приведите пример задачи целочисленного линейного программирования
- •Приведите пример задачи параметрического линейного программирования.
- •64.Приведите пример многокритериальной задачи
- •65.Сформулируйте условие окончания ветвления при решении задач методом виг.
- •66.Что такое решение, оптимальное по Парето в многокритериальной задаче.
- •67.Объясните, почему метод виг принадлежит к методам отсечения?
- •68. Почему нельзя решать задачу целочисленного лп, решив ее сначала как обычную задачу лп без учета целочисленности, а затем округлив полученное решение?
- •Что такое решение, оптимальное по Парето, в многокритериальной оптимизации?
- •Описать метод ветвей и границ
- •Метод динамического программирования, функция состояния, уравнение Беллмана
- •Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •73.Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •74.Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •75. Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •76. Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •В чем отличие «условий неопределенности» от «вероятностных условий». Что такое полная неопределенность и частичная неопределенность?
- •Что такое платежная матрица и матрица рисков, экономический смысл платежной матрицы
- •Как по платежной матрице составить матрицу рисков?
- •Как рекомендуется принимать решение «по Вальду»?
- •Как рекомендуется принимать решение «по Сэвиджу»?
- •Как рекомендуется принимать решение «по Гурвицу»?
- •Что такое правило «розового оптимизма»?
- •Как находится риск финансовой операции как среднее квадратическое?
- •Что такое доминирование финансовых операций?
- •Что такое взвешивающая формула?
- •Каков экономический смысл среднего ожидаемого дохода финансовой операции? Формула для его расчета
- •Как рекомендуется принимать решение по критерию наибольшего среднего ожидаемого дохода?
- •Верхняя и нижняя цена игры в матричной игре в чистых стратегиях, их нахождение
- •Оптимальные стратегии в матричной игре в чистых стратегиях, условие их существования, седловая точка матрицы
- •Дана матрица, один из элементов которой является параметром. Найти область значений параметра (с доказательством!), при которых заданные стратегии игроков будут оптимальными .
Метод динамического программирования, функция состояния, уравнение Беллмана
Динамическое программирование представляет собой математический аппарат, разработанный для решения некоторого класса задач математического программирования путем их разложения на относительно небольшие и, следовательно, менее сложные задачи. Специфика метода динамического программирования состоит в том, что для отыскания оптимального управления планируемая операция разделяется на ряд последовательных шагов или этапов. Соответственно и сам процесс планирования операции становится многошаговым и развивается последовательно, от этапа к этапу, причем каждый раз оптимизируется управление только на одном шаге.
В основе динамического программирования лежат 2 принципа:
Первый- принцип оптимальности Беллмана: каковы бы ни были начальное состояние системы и принятое решение, все последующие решения на остальных шагах должны составлять оптимальную стратегию относительно состояния, возникающего в результате первого решения.
Второй- принцип вложения: природа задачи, допускающая использование метода динамического программирования, не меняется при изменении числа шагов.
Структура процессов, исследуемых методом динамического программирования, должна удовлетворять следующим условиям:
небольшое число переменных
* управляемый процесс- Марковский, т.е. предыстория не имеет значения при определении будущих действий
* критерий эффективности J является аддитивным.
Состояние на каждом шаге характ-ся некоторой переменной величиной, кот. называется параметром состояния. Наилучший эффект на данном этапе вместе с уже рассмотренными шагами хар-ся функцией состояния. Решение конкретной задачи методом динамич. программирования сводится к выбору параметра состояния, составлению ф-ии состояния и рекурентных соотношений, связывающих ф-ии состояния для двух соседних последовательных этапов, и их применению для выбора оптимального управления.
Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
Предприятие производит некоторое изделие, на которое оно имеет заказ на п месяцев.
Необходимо
спланировать объем выпуска
и
хранения
продукции для
каждого месяца его работы при условии,
что суммарные затраты на производство
и хранение продукции за п
месяцев
будут минимальными при полном
удовлетворении
спроса на продукцию. При этом уровень
запасов к началу первого месяца
задан,
а к концу последнего
.
Известны также спрос
на продукцию в каждом j-м
месяце и затраты
на
производство
и хранение
единиц
продукции в каждом j-м
месяце.
F(x1, x2, x3, x4) =f1(x1) + f2(x2) + f3(x3) + f4(x4)
x1+x2+x3+x4= Z(700)
gk= max( fk(xk) + gk-1 (Z-xk)) F= g4(Z)
xk= 0, 100, 200, 300, 400
G3 F3 |
0 100 200 300 400 |
0 100 200 300 400 |
95 97 105 101 99 |
g3(400) =105