
- •В каком случае вектор b можно назвать линейной комбинацией векторов a1,..., ап?
- •Ввести необходимые векторы и матрицы и записать в векторно-матричной форме следующую задачу (дана задача лп, записанная в обычном виде).
- •9. Дайте определения ранга матрицы размером т*n. Определите ранг матрицы (матрица задана)
- •12.Единичная матрица: определение, формулы для элементов
- •13. Обратная матрица: определение, условия существования обратной матрицы
- •14. Постановка линейной производственной задачи, смысл переменных, векторов и матриц,допустимый и оптимальный план, математическая модель
- •Постановка общей задачи математического программирования. Основные понятия
- •Вектор-градиент, линия уровня, область допустимых решений в задаче лп. Геометрическая интерпретация задачи линейного программирования.
- •Многошаговые процессы решений в экономике. Суть метода динамического программирования. Параметр состояния и функция состояния системы, рекуррентные соотношения.
- •Матричные игры с нулевой суммой, смысл коэффициентов платежной матрицы, примеры матричных игр.
- •Основные понятия в теории графов: Дуги, вершины в ориентированном и неориентированном графе. Примеры применения теории графов в экономике.
- •Экономический смысл двойственной задачи к модели оптимального планирования производства. Математическая модель задачи определения расчетных оценок ресурсов
- •Сформулировать и доказать критерий оптимальности решения задачи линейного программирования при отыскании максимума линейной функции симплексным методом.
- •22. Сформулировать и доказать критерий оптимальности решения задачи линейного программирования при отыскании минимума линейной функции симплексным методом.
- •В каком случае базисное оптимальное решение задачи линейного программирования будет ее единственным оптимальным решением? Ответ обосновать
- •В каком случае задача оптимального производственного планирования не имеет оптимального плана? Ответ обосновать
- •В каком случае при решении задачи линейного программирования симплекс-методом значения линейной функции двух последовательных планов могут совпасть? Ответ обосновать
- •Сформулировать и доказать условие неограниченности целевой функции на множестве допустимых решений при решении задачи линейного программирования симплекс-методом.
- •28. Сформулировать теорему о связи решений исходной и вспомогательной задач при решении задачи линейного программирования методом искусственного базиса.
- •Доказать, что если при решении задачи линейного программирования:
- •30. Для задачи линейного программирования:
- •Правила выбора ключевого столбца и строки при решении задачи лп симплексным методом, последствия неправильного выбора
- •32.Введение балансовых переменных в систему ограничений задачи лп: цель и правило введения
- •33.Введение искусственных переменных в систему ограничений задачи лп при решении задачи лп методом искусственного базиса: цель и правило введения
- •34. В каком случае процесс решения задачи лп симплекс-методом является конечным?
- •35. В каких задачах применяется симплекс-метод?
- •36. Что представляет собой симплексная таблица?
- •37. Запишите симметричную пару двойственных задач линейного программирования.
- •38. Сформулируйте правила составления задачи, двойственной к данной задаче линейного программирования с ограничениями — неравенствами.
- •39. Матричная запись пары двойственных задач лп (симметричная пара задач с ограничениями-неравенствами и несимметричная пара, где в одной из задач ограничения имеют вид равенств)
- •Сформулировать и доказать основное неравенство теории двойственности линейного программирования.
- •Сформулировать и доказать малую теорему двойственности.
- •42. Сформулировать и доказать теорему о достаточном условии оптимальности решений пары двойственных задач линейного программирования.
- •43.Сформулировать и доказать первую основную теорему двойственности. В чем состоит экономическое содержание первой основной теоремы двойственности?
- •44.Сформулировать и доказать вторую основную теорему двойственности. В чем состоит экономическое содержание второй основной теоремы двойственности?
- •Сформулировать и доказать третью основную теорему двойственности. В чем состоит экономическое содержание третьей основной теоремы двойственности?
- •46.В чем состоит условие устойчивости двойственных оценок?
- •47.Сформулируйте задачу о расшивке узких мест производства и постройте ее математическую модель.
- •48.Постановка и математическая модель замкнутой транспортной задачи, число базисных неизвестных. Записать основные свойства этой модели.
- •51.Записать правила построения первого базисного решения замкнутой транспортной задачи по методу северо-западного угла.
- •52.Записать правила построения первого базисного решения замкнутой транспортной задачи по методу минимального элемента в матрице тарифов.
- •54.Правила расчета потенциалов поставщиков и потребителей в транспортной задаче. Расчет оценочных коэффициентов для свободных клеток транспортной задачи. Условие оптимальности базисного решения.
- •55.Записать определение цикла пересчета в транспортной таблице. Использование цикла пересчета для получения нового (улучшенного) базисного решения.
- •56.Записать алгоритм решения транспортной задачи (перечислить по порядку этапы решения). Обосновать конечность метода потенциалов решения транспортной задачи.
- •57.Объяснить смысл перевозок от фиктивного поставщика или к фиктивному потребителю в оптимальном решении транспортной задачи.
- •58.Что такое целочисленное линейное программирование? Допустимое множество задачи цлп.
- •59.Что такое параметрическое линейное программирование? Где может находиться параметр?
- •60.Что такое многокритериальная задача?
- •61.Что такое рекорд в методе ветвей и границ?
- •62.Приведите пример задачи целочисленного линейного программирования
- •Приведите пример задачи параметрического линейного программирования.
- •64.Приведите пример многокритериальной задачи
- •65.Сформулируйте условие окончания ветвления при решении задач методом виг.
- •66.Что такое решение, оптимальное по Парето в многокритериальной задаче.
- •67.Объясните, почему метод виг принадлежит к методам отсечения?
- •68. Почему нельзя решать задачу целочисленного лп, решив ее сначала как обычную задачу лп без учета целочисленности, а затем округлив полученное решение?
- •Что такое решение, оптимальное по Парето, в многокритериальной оптимизации?
- •Описать метод ветвей и границ
- •Метод динамического программирования, функция состояния, уравнение Беллмана
- •Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •73.Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •74.Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •75. Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •76. Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •В чем отличие «условий неопределенности» от «вероятностных условий». Что такое полная неопределенность и частичная неопределенность?
- •Что такое платежная матрица и матрица рисков, экономический смысл платежной матрицы
- •Как по платежной матрице составить матрицу рисков?
- •Как рекомендуется принимать решение «по Вальду»?
- •Как рекомендуется принимать решение «по Сэвиджу»?
- •Как рекомендуется принимать решение «по Гурвицу»?
- •Что такое правило «розового оптимизма»?
- •Как находится риск финансовой операции как среднее квадратическое?
- •Что такое доминирование финансовых операций?
- •Что такое взвешивающая формула?
- •Каков экономический смысл среднего ожидаемого дохода финансовой операции? Формула для его расчета
- •Как рекомендуется принимать решение по критерию наибольшего среднего ожидаемого дохода?
- •Верхняя и нижняя цена игры в матричной игре в чистых стратегиях, их нахождение
- •Оптимальные стратегии в матричной игре в чистых стратегиях, условие их существования, седловая точка матрицы
- •Дана матрица, один из элементов которой является параметром. Найти область значений параметра (с доказательством!), при которых заданные стратегии игроков будут оптимальными .
65.Сформулируйте условие окончания ветвления при решении задач методом виг.
Основная идея метода «ветвей и границ» состоит в разбиении множества допустимых решений на подмножества, которые, в свою очередь, разбиваются на подмножества и т.д. При этом среди возникающих подмножеств могут быть такие, которые не содержат допустимых решений или заведомо не содержат оптимальных решений. Если это удается определить на некотором этапе с помощью тех или иных оценок, то такие подмножества исключаются из дальнейшего рассмотрения. В результате решение находится частичным перебором.
Критерии окончания ветвления:
В задаче на максимум в начале решения граничное значение целевой функции, или рекорд, полается равным - ∞ .
1. Получена задача, не имеющая решения. Это становится все более вероятным с увеличением глубины ветвления, когда все большее число ограничений вида xi ≤ [{xi0] , или xi ≥ [{xi0] +1 добавляется к уже существующим ограничениям( так, что все более вероятным становится несовместимость системы ограничений получаемых задач).
2. Если находится новое целочисленное решение, то оно сравнивается с рекордом; если прежний рекорд превзойден, то запоминается новый рекорд, в противном случае остается старый.
3. Получаемое оптимальное нецелочисленное решение задачи на какой-то стадии ветвления сравнивается с рекордом; если это значение меньше, чем рекорд, то ветвление задачи прекращается, так как нет возможности побить рекорд.
Непобитый рекорд дает оптимальное решение исходной задачи ЦЛП.
66.Что такое решение, оптимальное по Парето в многокритериальной задаче.
Множество допустимых решений, для которых невозможно одновременно улучшить все частные показатели эффективности, принято называть областью Парето или областью компромиссов, а принадлежащие ей решения – эффективными или оптимальными по Парето.
67.Объясните, почему метод виг принадлежит к методам отсечения?
При решении методом отсекающих плоскостей задачи при снятии условия целочисленности на переменные превращаются в обычные задачи ЛП. Основной этап решения задач при помощи этого метода состоит в последовательном решении получающихся друг из друга ряда задач ЛП. Каждая последующая задача формируется из предыдущей путём введения дополнительного к имеющимся ограничениям нового ограничения, называемым правильным отсечением. Правильным оно наз-ся потому, что отсекает от допустимой области предыдущей задачи её оптимальное решение, не отсекая в то же время ни одного допустимого реш-ия исходной задачи. Данный процесс прекращается, когда в очередной задаче либо получено оптимальное решение, принадлежащее области допустимых решений исходной задачи, либо установлена пустота области её допустимых решений.
Метод ВИГ позволяет отбрасывать достаточно большие подмножества допустимого множества D, состоящее из заведомо неоптимальных точек. Эта идея и положена в основу алгоритма метода ВИГ.
Из вышесказанного можно сделать вывод, что метод ВИГ принадлежит к методам отсечения.
Вообще, отсечение- отбрасывание части допустимой области. Применяется это тогда, когда нужно найти целочисленное решение.
Метод ВИГ принадлежит к методам отсечения потому, что при решении задачи этим методом, допустимая область делится на части и при решении задачи для каждой отдельной части, мы оставшиеся части временно не учитываем ( т.е. отсекаем).