
- •В каком случае вектор b можно назвать линейной комбинацией векторов a1,..., ап?
- •Ввести необходимые векторы и матрицы и записать в векторно-матричной форме следующую задачу (дана задача лп, записанная в обычном виде).
- •9. Дайте определения ранга матрицы размером т*n. Определите ранг матрицы (матрица задана)
- •12.Единичная матрица: определение, формулы для элементов
- •13. Обратная матрица: определение, условия существования обратной матрицы
- •14. Постановка линейной производственной задачи, смысл переменных, векторов и матриц,допустимый и оптимальный план, математическая модель
- •Постановка общей задачи математического программирования. Основные понятия
- •Вектор-градиент, линия уровня, область допустимых решений в задаче лп. Геометрическая интерпретация задачи линейного программирования.
- •Многошаговые процессы решений в экономике. Суть метода динамического программирования. Параметр состояния и функция состояния системы, рекуррентные соотношения.
- •Матричные игры с нулевой суммой, смысл коэффициентов платежной матрицы, примеры матричных игр.
- •Основные понятия в теории графов: Дуги, вершины в ориентированном и неориентированном графе. Примеры применения теории графов в экономике.
- •Экономический смысл двойственной задачи к модели оптимального планирования производства. Математическая модель задачи определения расчетных оценок ресурсов
- •Сформулировать и доказать критерий оптимальности решения задачи линейного программирования при отыскании максимума линейной функции симплексным методом.
- •22. Сформулировать и доказать критерий оптимальности решения задачи линейного программирования при отыскании минимума линейной функции симплексным методом.
- •В каком случае базисное оптимальное решение задачи линейного программирования будет ее единственным оптимальным решением? Ответ обосновать
- •В каком случае задача оптимального производственного планирования не имеет оптимального плана? Ответ обосновать
- •В каком случае при решении задачи линейного программирования симплекс-методом значения линейной функции двух последовательных планов могут совпасть? Ответ обосновать
- •Сформулировать и доказать условие неограниченности целевой функции на множестве допустимых решений при решении задачи линейного программирования симплекс-методом.
- •28. Сформулировать теорему о связи решений исходной и вспомогательной задач при решении задачи линейного программирования методом искусственного базиса.
- •Доказать, что если при решении задачи линейного программирования:
- •30. Для задачи линейного программирования:
- •Правила выбора ключевого столбца и строки при решении задачи лп симплексным методом, последствия неправильного выбора
- •32.Введение балансовых переменных в систему ограничений задачи лп: цель и правило введения
- •33.Введение искусственных переменных в систему ограничений задачи лп при решении задачи лп методом искусственного базиса: цель и правило введения
- •34. В каком случае процесс решения задачи лп симплекс-методом является конечным?
- •35. В каких задачах применяется симплекс-метод?
- •36. Что представляет собой симплексная таблица?
- •37. Запишите симметричную пару двойственных задач линейного программирования.
- •38. Сформулируйте правила составления задачи, двойственной к данной задаче линейного программирования с ограничениями — неравенствами.
- •39. Матричная запись пары двойственных задач лп (симметричная пара задач с ограничениями-неравенствами и несимметричная пара, где в одной из задач ограничения имеют вид равенств)
- •Сформулировать и доказать основное неравенство теории двойственности линейного программирования.
- •Сформулировать и доказать малую теорему двойственности.
- •42. Сформулировать и доказать теорему о достаточном условии оптимальности решений пары двойственных задач линейного программирования.
- •43.Сформулировать и доказать первую основную теорему двойственности. В чем состоит экономическое содержание первой основной теоремы двойственности?
- •44.Сформулировать и доказать вторую основную теорему двойственности. В чем состоит экономическое содержание второй основной теоремы двойственности?
- •Сформулировать и доказать третью основную теорему двойственности. В чем состоит экономическое содержание третьей основной теоремы двойственности?
- •46.В чем состоит условие устойчивости двойственных оценок?
- •47.Сформулируйте задачу о расшивке узких мест производства и постройте ее математическую модель.
- •48.Постановка и математическая модель замкнутой транспортной задачи, число базисных неизвестных. Записать основные свойства этой модели.
- •51.Записать правила построения первого базисного решения замкнутой транспортной задачи по методу северо-западного угла.
- •52.Записать правила построения первого базисного решения замкнутой транспортной задачи по методу минимального элемента в матрице тарифов.
- •54.Правила расчета потенциалов поставщиков и потребителей в транспортной задаче. Расчет оценочных коэффициентов для свободных клеток транспортной задачи. Условие оптимальности базисного решения.
- •55.Записать определение цикла пересчета в транспортной таблице. Использование цикла пересчета для получения нового (улучшенного) базисного решения.
- •56.Записать алгоритм решения транспортной задачи (перечислить по порядку этапы решения). Обосновать конечность метода потенциалов решения транспортной задачи.
- •57.Объяснить смысл перевозок от фиктивного поставщика или к фиктивному потребителю в оптимальном решении транспортной задачи.
- •58.Что такое целочисленное линейное программирование? Допустимое множество задачи цлп.
- •59.Что такое параметрическое линейное программирование? Где может находиться параметр?
- •60.Что такое многокритериальная задача?
- •61.Что такое рекорд в методе ветвей и границ?
- •62.Приведите пример задачи целочисленного линейного программирования
- •Приведите пример задачи параметрического линейного программирования.
- •64.Приведите пример многокритериальной задачи
- •65.Сформулируйте условие окончания ветвления при решении задач методом виг.
- •66.Что такое решение, оптимальное по Парето в многокритериальной задаче.
- •67.Объясните, почему метод виг принадлежит к методам отсечения?
- •68. Почему нельзя решать задачу целочисленного лп, решив ее сначала как обычную задачу лп без учета целочисленности, а затем округлив полученное решение?
- •Что такое решение, оптимальное по Парето, в многокритериальной оптимизации?
- •Описать метод ветвей и границ
- •Метод динамического программирования, функция состояния, уравнение Беллмана
- •Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •73.Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •74.Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •75. Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •76. Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •В чем отличие «условий неопределенности» от «вероятностных условий». Что такое полная неопределенность и частичная неопределенность?
- •Что такое платежная матрица и матрица рисков, экономический смысл платежной матрицы
- •Как по платежной матрице составить матрицу рисков?
- •Как рекомендуется принимать решение «по Вальду»?
- •Как рекомендуется принимать решение «по Сэвиджу»?
- •Как рекомендуется принимать решение «по Гурвицу»?
- •Что такое правило «розового оптимизма»?
- •Как находится риск финансовой операции как среднее квадратическое?
- •Что такое доминирование финансовых операций?
- •Что такое взвешивающая формула?
- •Каков экономический смысл среднего ожидаемого дохода финансовой операции? Формула для его расчета
- •Как рекомендуется принимать решение по критерию наибольшего среднего ожидаемого дохода?
- •Верхняя и нижняя цена игры в матричной игре в чистых стратегиях, их нахождение
- •Оптимальные стратегии в матричной игре в чистых стратегиях, условие их существования, седловая точка матрицы
- •Дана матрица, один из элементов которой является параметром. Найти область значений параметра (с доказательством!), при которых заданные стратегии игроков будут оптимальными .
60.Что такое многокритериальная задача?
Задача с несколькими целевыми функциями. Она не имеет решения.
61.Что такое рекорд в методе ветвей и границ?
Рекорд - граничное значение целевой функции; наилучшее из найденных решений.
62.Приведите пример задачи целочисленного линейного программирования
Решить задачу ЦЛП:
f(x1,x2)= 2x1+3x2 → max,
5x1+7x2 ≤ 35,
4x1+9x2 ≤ 36,
x1, x2 ≥ 0,
x1,x2 - целые
Задачу решить можно методом прямого перебора. Организуем 2 цикла: 1-й по x1 от 0 до 9, 2-й, встроенный в первый, - по x2 от 0 до 5. Оператор тела цикла проверяет, удовлетворяет ли точка (x1, x2) обоим неравенствам, вычисляется значение функции f(x1, x2) и сравнивается с запомненным наилучшим решением
Приведите пример задачи параметрического линейного программирования.
Параметрическое программирование представляет собой один из разделов математического программирования, изучающий задачи, в которых целевая функция или ограничения зависят от одного или нескольких параметров.
Рассмотрим задачу параметрического линейного программирования, в которой только коэффициенты целевой функции линейно зависят от некоторого единственного параметра λ (времени, температуры и т. п.):
О
тыскать
максимум (или минимум) функции:
при условиях:
64.Приведите пример многокритериальной задачи
М
атематически
такая задача содержит область допустим
реш-ий, кот может иметь любую природу,
и нес-ко целевых ф-ций, значение которых
должно максимизироваться или
минимизироваться в данной области.
Максимизация или минимизация целевых
ф-ций сводится друг к другу умножением
на -1, поэтому, не нарушая общности, можно
считать, что данная задача имеет вид:
(x)
max
(i=1,2,…,n),
x
D, (1)
x - ?,
где D – область допустим реш-ий. При этом в задаче x может быть векторным параметром. Если кол-во целевых функций (x) в задаче (1) больше одной, то данная задача явл зад-ей многокритериальной оптимизации. В экономических задачах допустим обл обычно задаётся системой ур-ний и неравенств, к которой могут быть добавлены некотор дополнит ограничения, например, ограничения на целочисленность переменных.
Пример. Парикмахерская может производит 2 вида продукции: муж и жен причёски, причём мастера, работающие в парик-ой явл-ся универсалами. Жен прич отнимает 2 ч работы мастера и приносит 10 у.е. прибыли. Муж прич отним 1 ч раб-ы и приносит 4 у.е. прибыли. Общий рес-с работы мастеров сост 40ч. Соц заказ, установленный для парик-ой при её открытии, состоит в максимальном кол-ве обслуженных клиентов. Если через x1 и x2 обознач кол-во муж и жен причёсок, сделанных в прарик-ой за рассматрив промежутов времени, то матем модель задачи имеет след вид: z1= 4x1+10x2 → max
z2= x1 + x2 →max
x1+2x2
≤
40
x1, x2 Z
x1, x2 ≥0
x1, x2 - ?
В дан задаче оптимальность производстен плана парик-ой опред-ся по 2 критериям: критерию максим прибыли и критерию максим кол-ва обслуженных клиентов. Этим критериям соответствуют целевые ф-ции z1 и z2 .
В задаче многокритериальной оптимизации (1), как правило, нет решений, поскольку цели, выражен различн критериями, часто явл-ся противоположными. Поэтому оптимальные значения целевых ф-ций достигаются при разных допустим реш-ях, кот нужно сравнивать, чтобы выбрать 1 допустимый вариант.