
- •В каком случае вектор b можно назвать линейной комбинацией векторов a1,..., ап?
- •Ввести необходимые векторы и матрицы и записать в векторно-матричной форме следующую задачу (дана задача лп, записанная в обычном виде).
- •9. Дайте определения ранга матрицы размером т*n. Определите ранг матрицы (матрица задана)
- •12.Единичная матрица: определение, формулы для элементов
- •13. Обратная матрица: определение, условия существования обратной матрицы
- •14. Постановка линейной производственной задачи, смысл переменных, векторов и матриц,допустимый и оптимальный план, математическая модель
- •Постановка общей задачи математического программирования. Основные понятия
- •Вектор-градиент, линия уровня, область допустимых решений в задаче лп. Геометрическая интерпретация задачи линейного программирования.
- •Многошаговые процессы решений в экономике. Суть метода динамического программирования. Параметр состояния и функция состояния системы, рекуррентные соотношения.
- •Матричные игры с нулевой суммой, смысл коэффициентов платежной матрицы, примеры матричных игр.
- •Основные понятия в теории графов: Дуги, вершины в ориентированном и неориентированном графе. Примеры применения теории графов в экономике.
- •Экономический смысл двойственной задачи к модели оптимального планирования производства. Математическая модель задачи определения расчетных оценок ресурсов
- •Сформулировать и доказать критерий оптимальности решения задачи линейного программирования при отыскании максимума линейной функции симплексным методом.
- •22. Сформулировать и доказать критерий оптимальности решения задачи линейного программирования при отыскании минимума линейной функции симплексным методом.
- •В каком случае базисное оптимальное решение задачи линейного программирования будет ее единственным оптимальным решением? Ответ обосновать
- •В каком случае задача оптимального производственного планирования не имеет оптимального плана? Ответ обосновать
- •В каком случае при решении задачи линейного программирования симплекс-методом значения линейной функции двух последовательных планов могут совпасть? Ответ обосновать
- •Сформулировать и доказать условие неограниченности целевой функции на множестве допустимых решений при решении задачи линейного программирования симплекс-методом.
- •28. Сформулировать теорему о связи решений исходной и вспомогательной задач при решении задачи линейного программирования методом искусственного базиса.
- •Доказать, что если при решении задачи линейного программирования:
- •30. Для задачи линейного программирования:
- •Правила выбора ключевого столбца и строки при решении задачи лп симплексным методом, последствия неправильного выбора
- •32.Введение балансовых переменных в систему ограничений задачи лп: цель и правило введения
- •33.Введение искусственных переменных в систему ограничений задачи лп при решении задачи лп методом искусственного базиса: цель и правило введения
- •34. В каком случае процесс решения задачи лп симплекс-методом является конечным?
- •35. В каких задачах применяется симплекс-метод?
- •36. Что представляет собой симплексная таблица?
- •37. Запишите симметричную пару двойственных задач линейного программирования.
- •38. Сформулируйте правила составления задачи, двойственной к данной задаче линейного программирования с ограничениями — неравенствами.
- •39. Матричная запись пары двойственных задач лп (симметричная пара задач с ограничениями-неравенствами и несимметричная пара, где в одной из задач ограничения имеют вид равенств)
- •Сформулировать и доказать основное неравенство теории двойственности линейного программирования.
- •Сформулировать и доказать малую теорему двойственности.
- •42. Сформулировать и доказать теорему о достаточном условии оптимальности решений пары двойственных задач линейного программирования.
- •43.Сформулировать и доказать первую основную теорему двойственности. В чем состоит экономическое содержание первой основной теоремы двойственности?
- •44.Сформулировать и доказать вторую основную теорему двойственности. В чем состоит экономическое содержание второй основной теоремы двойственности?
- •Сформулировать и доказать третью основную теорему двойственности. В чем состоит экономическое содержание третьей основной теоремы двойственности?
- •46.В чем состоит условие устойчивости двойственных оценок?
- •47.Сформулируйте задачу о расшивке узких мест производства и постройте ее математическую модель.
- •48.Постановка и математическая модель замкнутой транспортной задачи, число базисных неизвестных. Записать основные свойства этой модели.
- •51.Записать правила построения первого базисного решения замкнутой транспортной задачи по методу северо-западного угла.
- •52.Записать правила построения первого базисного решения замкнутой транспортной задачи по методу минимального элемента в матрице тарифов.
- •54.Правила расчета потенциалов поставщиков и потребителей в транспортной задаче. Расчет оценочных коэффициентов для свободных клеток транспортной задачи. Условие оптимальности базисного решения.
- •55.Записать определение цикла пересчета в транспортной таблице. Использование цикла пересчета для получения нового (улучшенного) базисного решения.
- •56.Записать алгоритм решения транспортной задачи (перечислить по порядку этапы решения). Обосновать конечность метода потенциалов решения транспортной задачи.
- •57.Объяснить смысл перевозок от фиктивного поставщика или к фиктивному потребителю в оптимальном решении транспортной задачи.
- •58.Что такое целочисленное линейное программирование? Допустимое множество задачи цлп.
- •59.Что такое параметрическое линейное программирование? Где может находиться параметр?
- •60.Что такое многокритериальная задача?
- •61.Что такое рекорд в методе ветвей и границ?
- •62.Приведите пример задачи целочисленного линейного программирования
- •Приведите пример задачи параметрического линейного программирования.
- •64.Приведите пример многокритериальной задачи
- •65.Сформулируйте условие окончания ветвления при решении задач методом виг.
- •66.Что такое решение, оптимальное по Парето в многокритериальной задаче.
- •67.Объясните, почему метод виг принадлежит к методам отсечения?
- •68. Почему нельзя решать задачу целочисленного лп, решив ее сначала как обычную задачу лп без учета целочисленности, а затем округлив полученное решение?
- •Что такое решение, оптимальное по Парето, в многокритериальной оптимизации?
- •Описать метод ветвей и границ
- •Метод динамического программирования, функция состояния, уравнение Беллмана
- •Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •73.Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •74.Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •75. Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •76. Составить математическую модель и записать функциональное уравнение Беллмана (рекуррентное соотношение), расшифровать все переменные и функции, входящие в него для следующей задачи:
- •В чем отличие «условий неопределенности» от «вероятностных условий». Что такое полная неопределенность и частичная неопределенность?
- •Что такое платежная матрица и матрица рисков, экономический смысл платежной матрицы
- •Как по платежной матрице составить матрицу рисков?
- •Как рекомендуется принимать решение «по Вальду»?
- •Как рекомендуется принимать решение «по Сэвиджу»?
- •Как рекомендуется принимать решение «по Гурвицу»?
- •Что такое правило «розового оптимизма»?
- •Как находится риск финансовой операции как среднее квадратическое?
- •Что такое доминирование финансовых операций?
- •Что такое взвешивающая формула?
- •Каков экономический смысл среднего ожидаемого дохода финансовой операции? Формула для его расчета
- •Как рекомендуется принимать решение по критерию наибольшего среднего ожидаемого дохода?
- •Верхняя и нижняя цена игры в матричной игре в чистых стратегиях, их нахождение
- •Оптимальные стратегии в матричной игре в чистых стратегиях, условие их существования, седловая точка матрицы
- •Дана матрица, один из элементов которой является параметром. Найти область значений параметра (с доказательством!), при которых заданные стратегии игроков будут оптимальными .
32.Введение балансовых переменных в систему ограничений задачи лп: цель и правило введения
Если в математической модели конкретной задачи условия, которыми связаны переменные целевой функции, представляют собой систему линейных алгебраических неравенств, то ее можно заменить некоторой системой линейных
алгебраических уравнений с бóльшим числом неизвестных и привести задачу к каноническому виду основной задачи линейного программирования. Эти неизвестные называют балансовыми или дополнительными. Правило введения: если неравенство со знаком «≤» , то добавляем в левую часть +Хm+I,если «≥», то -Хm+i
33.Введение искусственных переменных в систему ограничений задачи лп при решении задачи лп методом искусственного базиса: цель и правило введения
Метод искусственного базиса применяется к решению задач линейного программирования в общем случае, когда система ограничений не имеет предпочитаемого вида.
Пусть
требуется минимизировать
(1) при ограничениях:
(2)
.
(3)
К данной задаче ЛП непосредственно нельзя применить симплексный метод, т.к. система (2) не имеет предпочитаемого вида, хотя правые части всех ее уравнений можно считать неотрицательными. Поэтому к левой части каждого уравнения системы (2) добавим по одной искусственной неотрицательной неизвестной и образуем следующую систему m линейных уравнений с n+m неизвестными:
(4)
где
(5)
Очевидно, в системе
(4) неизвестные
образуют базисный набор, который принято
называть искусственным.
Кроме того, образуем искусственную
линейную форму:
(6) и сформулируем следующую вспомогательную
задачу линейного программирования:
минимизировать линейную форму (6) при
линейных ограничениях (4) и (5).
Для решения вспомогательной задачи можно применить симплексный метод, так как система (4) имеет предпочитаемый вид, искусственные неизвестные являются базисными, а правые части всех уравнений неотрицательны. В процессе решения вспомогательной задачи система уравнений (4) будет подвергаться симплексным преобразованиям, в результате которых искусственные базисные неизвестные будут переходить в число свободных, а в базисный набор будут постепенно включаться исходные неизвестные. На некотором этапе процесса решения вспомогательной задачи система уравнений (4) примет такой предпочитаемый вид, что соответствующее базисное решение будет оптимальным решением этой задачи. При этом минимальное значение целевой функции может быть или положительным, или равным нулю, так как функция представляет сумму неотрицательных переменных.
Если Smin<0, то исходная задача не имеет решения ввиду противоречивости условий (2) и (3). Действительно, если допустить, что система уравнений (2) имеет неотрицательное решение (α1,α2,...,αn), то вспомогательная задача будет иметь решение (α1,α2,...,αn,0,0,…,0) для которого S=0, что противоречит предположению.
Если же S=0, то возможна дальнейшая минимизация
34. В каком случае процесс решения задачи лп симплекс-методом является конечным?
В любом. Но при этом оптимальное решение будет достигнуто не всегда.