Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
нейрофизиология.docx
Скачиваний:
2
Добавлен:
22.09.2019
Размер:
20.97 Кб
Скачать

6. Транспорт веществ через мембрану

Пассивный транспорт.

Если вещество движется через мембрану из области с высокой концентрацией в сторону низкой концентрации (т. е. по градиенту концентрации этого вещества) без затраты клеткой энергии, то такой транспорт называется пассивным, или диффузией. Различают два типа диффузии: простую и облегченную.

Простая диффузия.

Характерна для небольших нейтральных молекул (H2O, CO2, O2), а также гидрофобных низкомолекулярных органических веществ. Эти молекулы могут проходить без какого-либо взаимодействия с мембранными белками через поры или каналы мембраны до тех пор, пока будет сохраняться градиент концентрации.

Облегченная диффузия.

Характерна для гидрофильных молекул, которые переносятся через мембрану также по градиенту концентрации, но с помощью специальных мембранных белков - переносчиков. Для облегченной диффузии, в отличие от простой, характерна высокая избирательность, так как белок переносчик имеет центр связывания комплементарный транспортируемому веществу, и перенос сопровождается конформационными изменениями белка. Один из возможных механизмов облегченной диффузии может быть следующим: транспортный белок (транслоказа) связывает вещество, затем сближается с противоположной стороной мембраны, освобождает это вещество, принимает исходную конформацию и вновь готов выполнять транспортную функцию. Мало известно о том, как осуществляется передвижение самого белка. Другой возможный механизм переноса предполагает участие нескольких белков-переносчиков. В этом случае первоначально связанное соединение само переходит от одного белка к другому, последовательно связываясь то с одним, то с другим белком, пока не окажется на противоположной стороне мембраны.

Активный транспорт.

Имеет место в том случае, когда перенос осуществляется против градиента концентрации. Такой перенос требует затраты энергии клеткой. Активный транспорт служит для накопления веществ внутри клетки. Источником энергии часто является АТФ. Для активного транспорта кроме источника энергии необходимо участие мембранных белков. Одна из активных транспортных систем в клетке животных отвечает за перенос ионов Na+ и K+ через клеточную мембрану. Эта система называется Na+ - K+ - насос. Она отвечает за поддержание состава внутриклеточной среды, в которой концентрация К+ выше, чем Na+.

7. Мембранный потенциал покоя

Потенциал покоя – это разность между электрическими потенциалами внутри и вне клетки в состоянии покоя.

Величина ПП варьируется в пределах 30-90 мВ.

ПП составляет основу возбуждения и переработки информации нервной клеткой, обеспечивает регуляцию деятельности внутренних органов и опорно-двигательного аппарата посредством запуска процессов возбуждения и сокращения в мышце.

Главным ионом, обеспечивающим формирование ПП, является ион К+. В покоящейся клетке устанавливается динамическое равновесие между числом выходящих из клетки и входящих в клетку ионов К+. Электрический и концентрационный градиенты противодействуют друг другу: согласно концентрационному градиенту К+ стремиться выйти из клетки, а отрицательный заряд внутри клетки и положительный заряд наружной поверхности клеточной мембраны препятствуют этому. Когда концентрационный и электрический градиенты уравновесятся, число выходящих из клетки ионов К+ становится равным числу входящих ионов К+ в клетку. В этом случае на клеточной мембране устанавливается равновесный калиевый потенциал.

В создании ПП принимают участие и другие ионы: Na+, Cl¯, Ca²+.

Проницаемость клеточной мембраны в покое для Na+ очень низка. Ионы Na+ согласно концентрационному и электрическому градиентам стремятся и в небольшом количестве проходят внутрь клетки. Это ведет к уменьшению ПП, т.к. на внешней поверхности клеточной мембраны суммарное число положительно заряженных ионов уменьшается, а часть отрицательных ионов внутри клетки нейтрализуется входящими в клетку положительно заряженными ионами Na+.

Влияние Cl¯ на величину ПП противоположно влиянию Na+. Cl¯ согласно концентрационному градиенту стремиться и проходит в клетку. Концентрации ионов К+ и Cl¯ близки между собой. Но Cl¯ находится в основном вне клетки, а К+ - внутри клетки. Препятствует входу Cl¯ в клетку электрический градиент, поскольку заряд внутри клетки отрицательный, как и заряд Cl¯. Наступает равновесие сил концентрационного градиента, способствующего входу Cl¯ в клетку, и электрического градиента, препятствующего входу Cl¯ в клетку. При поступлении Cl¯ внутрь клетки число отрицательных зарядов вне клетки несколько уменьшается, а внутри клетки увеличивается: Cl¯ добавляется к крупным анионам белковой природы, находящимся внутри клетки. Таким образом, Cl¯, проникая внутрь клетки, увеличивает ПП.

Наружная и внутренняя поверхности клеточной мембраны несут собственные электрические заряды. Фиксированные наружные отрицательные заряды, нейтрализуя положительные заряды внешней поверхности мембраны, уменьшают ПП. Фиксированные внутренние отрицательные заряды клеточной мембраны, напротив, суммируясь с анионами внутри клетки, увеличивают ПП. Ионы Ca²+ взаимодействуют с наружными отрицательными фиксированными зарядами мембраны клетки, что ведет к увеличению и стабилизации ПП.

В целом ПП – это алгебраическая сумма не только всех зарядов ионов вне и внутри клетки, но и отрицательных внешних и внутренних поверхностных зарядов самой клеточной мембраны.