
Введение в эконометрику.
Эконометрика – это математическая наука, изучающая экономическую жизнь с помощью математических методов и, преимущественно, методов математической статистики.
Цели эконометрики: эконометрический анализ данных наблюдений и вывод обоснованных практических решений.
Основным объектом изучения эконометрики является эконометрическая модель.
Основные этапы эконометрического анализа:
Постановочный этап – этот этап включает в себя определение конечных целей анализа, набора факторов и переменных, описание взаимосвязей между ними, а также роли этих факторов и переменных.
На этом этапе первым делом следует выяснить, какие факторы являются входными, т.е. такими, которые полностью или частично регулируемы, легко поддаются прогнозу и регистрации. Входные факторы в эконометрике называются объясняющими.
Затем определяются выходные факторы, которые трудно поддаются прогнозу, и значения которых формируются в процессе функционирования рассматриваемой системы. Выходные факторы также называются объясняемыми.
Априорный (предмодельный) этап – этот этап состоит в предварительном анализе содержательной сущности моделируемых явлений, в формировании и математической формализации имеющейся априорной (предварительной) информации о данном явлении в виде ряда гипотез и математических соотношений.
Информационно-статистический (практический) этап – на этом этапе происходит сбор необходимой статистической информации: регистрация конкретных значений определенных ранее переменных и факторов.
Спецификация модели – на данном этапе определяется структура модели, т.е. её символическая математическая запись, в которой, наряду с переменными и факторами, значения которых известны, обычно присутствуют величины, содержательный смысл которых определен, а числовые значения – нет.
Такие величины называются параметрами модели и их значения нужно найти.
Идентификация модели (id) – этот этап предназначен для проведения статистического анализа модели.
При выполнении данного этапа вначале нужно ответить на вопрос: возможно ли, в принципе, однозначно восстановить значение неизвестных параметров модели по имеющимся статистическим данным?
Если ответ положителен, то необходимо решить проблему идентификации модели, т.е. нужно предложить и реализовать математически корректную процедуру оценивания неизвестных параметров модели.
Если ответ отрицателен, то необходимо вернуться к этапу №4 и внести изменения в структуру. Но, возможно, придется вообще вернуться к этапу №2 и выбрать другую модель.
Верификация модели (статистический анализ точности и адекватности модели) – на данном этапе используются различные процедуры сопоставления модельных выводов (выводов по модели), оценок и следствий с реально наблюдаемой действительностью.
Если результат сопоставления неудовлетворительный, то следует вернуться на этапы №4 и №5.
Эконометрическая система «Черный ящик».
Входные факторы Выходные факторы
x
1 y1
x2 y2
x3 y3
xn ym
Типы эконометрических моделей:
Модель с одним уравнением – эта модель получается при m=1, т.е. при одном зависимом факторе, следовательно,
(
),
где
=
(
,
а
- параметры модели,
В этой модели в зависимости от функции f, различают также линейные и нелинейные модели.
Например:
–
линейная модель
– нелинейная модель
Модель с несколькими одновременными уравнениями - эта модель получается при m
, т.е. с множеством зависимых факторов, следовательно,
(
),
где
=
(
)?
(
), а
- параметры модели,
. . . при
(
).
Важной отличительной особенностью этой системы уравнений является возможность включения объясняемых переменных в число объясняющих, т.е.
(
), где ), где
=
(
,
а
- параметры модели,
Временные ряды - это схема «черный ящик» с n=1, т.е. входной фактор всего один и это – время, следовательно,
(
),
где t
- время,
а
- параметры модели,
Постановки задач в эконометрике.
Предположим, что у нас есть A I – объекты исследования, при i = 1 ,2…N
X1, X2 …XN – переменные, которые описывают эти объекты. Эти переменные делятся на два типа: независимые (объясняющие, входные) и зависимые (объясняемые, выходные). Также они бывают количественными и качественными (дискретными).
Изначально, для постановки задачи, среди всех факторов и переменных следует выделить Y – зависимую переменную.
Цель эконометрического анализа – прогнозирование значения Y. Эта задача решается по-разному, в зависимости от типа переменных:
все переменные X (
1, 2… n) и Y (
1, 2… n) количественные => для решения применяются методы регрессионного анализа.
все переменные X ( 1, 2… n)– количественные, а все Y( 1, 2… n) – качественные (дискретные) => для решения применяются методы классификации, распознавания образов и дискриминантный анализ.
все переменные X ( 1, 2… n)– качественные (дискретные), а все Y( 1, 2… n) – количественные => для решения применяются методы дисперсионного анализа.
одна часть переменных X ( 1, 2… L) – количественные, а другая часть ( L, 2… n) – качественные (дискретные), все переменные Y( 1, 2… n) – количественные => для решения применяются ковариационный анализ или метод «деревья регрессии».
Регрессионный анализ.
– решающая
функция или функция регрессии.
Замечание:
1)
=
E(Y/X),
где
Y
и
X
-
дискретные случайные величины.
Y X |
b1 |
b2 |
…. |
bn |
a1 |
P1 1 |
P1 2 |
…. |
P1 n |
a2 |
P2 1 |
P2 2 |
…. |
P2 n |
…. |
…. |
…. |
…. |
…. |
an |
Pn 1 |
Pn 2 |
…. |
Pn n |

Если Y и X дискретные случайные величины, то функция регрессии – это условное мат.ожидание.
2) Если Y и X - непрерывные случайные величины
-
плотность совместного распределения
X
и
Y.
Условное распределение, следовательно и условная плотность.
,
- частное распределение
Мат.
ожидание:
(
i,
i)...-значения
наблюдений (Y,X)
i=1,2,..,n
Естественно,
при каждом
наблюдении возможна
ошибка (
).
Предполагают, что - вектор ошибок - удовлетворяет следующим условиям:
1.
-
независимые случайные величины
2.
Е
=0,
D
=
- постоянные
3.
и
тоже независимые, т.е. ошибка от Х
не зависит
Этапы (шаги) регрессионного анализа:
1. выбор вида модели
2. оценка параметров выбранной модели. Оценка функций регрессии ( *).
3.проверка статистических гипотез по регрессионной модели.
4. проверка модели на адекватность и точность.
5.эксперементальная проверка модели и прогнозирование на основе этой модели.
Виды регрессионных моделей:
1. простейшая линейная модель
,
– параметры
модели
2. множественная линейная модель
3. полиномиальная модель
4.гипперболическая модель
5. показательная модель
6. логистическая модель (S-образная кривая)
7. стапенная модель
8. логарифмическая модель
Замечание: Метод аналитической группировки.
Способ выбора вида модели. Графический.
-
X
…
Y
…
,
-
количество интервалов
,
-
длина интервала
И т.д.
:
Т.е.
- одна средняя точка
Далее, определив
еще несколько средних точек, строим по
ним график функции и по нему определяем
вид модели.
Оценивание параметров выбранной модели (на примере линейной модели, т.к. остальные виды моделей с помощью небольших преобразований сводятся к линейной).
Примеры моделей, которые сводятся к линейным:
- гиперболическая модель
=>
- показательная модель
,
,
-
…
…
…
…
…
=>
=>
– логистическая модель
,
,
=>
=>
– степенная модель
,
,
=>
– логарифмическая модель
=>
Наша регрессионная модель имеет классическую форму, т.е. удовлетворяет следующим двум условиям:
Переменная – не случайная величина, т.е. она задается (управляема), - случайная величина.
Случайные ошибки
независимые, одинаково распределенные случайные, имеющие нормальное распределение с нулевым математическим ожиданием (
) и
Теорема Гауса-Маркова. (без доказательства)
Пусть
выполняются условия №№ 1 и2, тогда
оценки, полученные методом наименьших
квадратов
обладают следующими свойствами:
Они не смещенные, т.е.
и
Дисперсия этих оценок минимальна среди всех линейных моделей, эти оценки называются эффективными.
Обобщенный метод наименьших квадратов.
Применение метода наименьших квадратов в некоторых случаях может привести к тому, что полученные оценки параметров не будут оптимальны в смысле теоремы Гауса-Маркова. Для анализа таких ситуаций обычно используют обобщенный метод наименьших квадратов для модели множественной регрессии.
,
где а
- вектор
параметров
,
где
)
– ошибки наблюдений
,
где
- неизвестная const,
- положительно определенная матрица.
В общем виде определить трудно вид этой матрицы , поэтому на практике делают некоторые предположения о её структуре. Если нарушается только условие:
(или одно из этих равенств не выполняется), то
,
где
неизвестны, но могут быть оценены
статистическими методами.
(условие некоррелируемости случайных ошибок), то матрица не является диагональной матрицей, т.е. вне главной диагонали есть ненулевые элементы, а на главной диагонали - только единицы.
Оценивание
параметров модели с помощью методов
наименьших квадратов происходит
следующим образом:
.
Эти оценки являются оптимальными
оценками в смысле теории Гауса-Маркова.
Для этой модели (множественной регрессионной модели) можно вычислить коэффициент детерминации, который может быть использован в качестве меры точности этой модели.
R – коэффициент детерминации
Где
Замечание: Выбор «важных» факторов.
Мы рассматриваем множественную регрессионную модель
.
Мы можем определить какие факторы нужно включить в модель, а какие нет с помощью коэффициентов корреляции.
Коэффициенты корреляции ищутся по формулам:
И т.д. до N
Свойства
:
1)
2)
3)
- прямая связь,
– обратная связь
Шаги:
И
оставляем только те
которые
связаны с
так, что
– выбираем 2 фактора
3)
Т.е.
связь между
больше, чем между
и
Если эти два условия одновременно выполняются, то они должны быть включены в модель.
Системы эконометрических уравнений.
Рассмотрим методы анализа моделей, описывающих объекты, процесс формирования которых определяется системами взаимосвязанных соотношений. Такие модели называются системами эконометрических уравнений – СЭУ.
Для
удобства переходят от переменных y
и x
к их отклонениям от средних, т.е.
,
а свободные члены превращаются в ноль
.
Следовательно, уравнение приобретает
вид:
Переменные,
которые входят в эту систему называются:
эндогенные
– стоящие в левой чести (зависимые) и
экзогенные
– стоящие в правой части, а
- параметры модел, которые подлежат
оценке,
– случайная ошибка.
Выбор метода оценивания параметра зависит от видов систем. Различают следующие виды систем:
Система независимых уравнений
Здесь предполагаем, что случайные ошибки удовлетворяют следующим условиям: В каждом уравнении ошибки независимые, имеют нулевое математическое ожидание и одинаковую дисперсию:
Ошибки из разных уравнений системы не кореллированны:
,
т.е.
При выполнении вышеуказанных условий, эконометрический анализ каждого уравнения системы может производиться независимо от остальных обобщенным методом наименьших квадратов.
Системы внешне не связанных уравнений – это система уравнений, в которой нарушено условие независимости случайных ошибок разных уравнений друг от друга.
,
где
,
=1,2,…,
,
где
номер
наблюдения
В связи с этим оценка параметров каждого уравнения в отдельности невозможно, потому что необходим совместный анализ таких уравнений.
,
,
,
,
=1,2,…,n
–вектор
значений iой
эндогенной
переменной в каждом N
наблюдении;
– матрица
значений экзогенных переменных,
включенных в iое
уравнение
системы;
- вектор неизвестных параметров iого
уравнения;
- вектор ошибок iого
уравнения.
или
в матричном виде
,
где
,
,
,
Обобщенным методом наименьших квадратов мы можем оценить параметры этих моделей.
,
где
,
где
,
– ковариационная матрица ошибок,
Системы рекурсивных уравнений – это системы эконометрических уравнений, в которых возможно упорядочить уравнения системы таким образом, чтобы в правой части первого уравнения присутствовали только экзогенные переменные
, в правой части второго уравнения – только экзогенные переменные и всего одна эндогенная (
, в правой части третьего уравнения – только экзогенные
и две эндогенные переменные
, и т.д.
Если система такова, то эконометрический анализ каждого уравнения может производиться отдельно от остальных и параметры могут оцениваться с помощью обобщенного метода наименьших квадратов.