Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры по ГИДРАВЛИКЕ.docx
Скачиваний:
23
Добавлен:
22.09.2019
Размер:
1.58 Mб
Скачать

Вопрос№27

Гидравлические потери по длине Потери напора по длине, иначе их называют потерями напора на трение , в чистом виде, т.е. так, что нет никаких других потерь, возникают в гладких прямых трубах с постоянным сечением при равномерном течении. Такие потери обусловлены внутренним трением в жидкости и поэтому происходят и в шероховатых трубах, и в гладких. Величина этих потерь выражается зависимостью

где - коэффициент сопротивления, обусловленный трением по длине.

При равномерном движении жидкости на участке трубопровода постоянного диаметра d длиной l этот коэффициент сопротивления прямо пропорционален длине и обратно пропорционален диаметру трубы

где lкоэффициент гидравлического трения (иначе его называют коэффициент потерь на трение или коэффициент сопротивления трения).

Из этого выражения нетрудно видеть, что значение l - коэффициент трения участка круглой трубы, длина которого равна её диаметру.

С учетом последнего выражения для коэффициента сопротивления потери напора по длине выражаются формулой Дарси

Эту формулу можно применять не только для цилиндрических трубопроводов, но тогда надо выразить диаметр трубопровода d через гидравлический радиус потока

или

где, напомним, Й – площадь живого сечения потока, З - смоченный периметр.

Гидравлический радиус можно вычислить для потока с любой формой сечения, и тогда формула Дарси принимает вид

Эта формула справедлива как для ламинарного, так и для турбулентного режимов движения жидкости, однако коэффициент трения по длине »не является величиной постоянной.

Для определения физического смысла коэффициента »рассмотрим объём жидкости длиной l, который равномерно движется в трубе диаметром d со скоростью V. На этот объём действуют силы давления P1 и P2, причём P1> P2, и силы трения рассматриваемого объёма о стенки трубы, которые определяются напряжением трения на стенке трубы Д0. Условием равномерного движения под действием сказанных сил будет следующее равенство:

Если учесть, что

,то и подставить эту величину в уравнение сил, действующих на рассматриваемый объём, получим:

Сократив последнее выражение, получим . Выразив из него », окончательно будем иметь

Из полученного выражения следует, что коэффициент гидравлического трения есть величина, пропорциональная отношению напряжения трения на стенке трубы к гидродинамическому давлению, посчитанному по средней скорости потока. Приведённые выше рассуждения и полученные в результате них формулы справедливы как для ламинарного, так и для турбулентного потоков. Однако коэффициент »не является величиной постоянной и зависит от многих факторов. Для выяснения его величины, и связанных с ним потерь энергии необходимо подробно проанализировать режимы движения жидкости.

Вопрос№28 Вопрос№29

Турбулентное течение жидкости

Турбулентное течение в гладких трубах

Гладкие или точнее технически гладкие трубы это такие, шероховатость внутренних поверхностей которых настолько мала, что практически не влияет на потери энергии на трение. К таким трубам относят

· цельнотянутые трубы из цветных металлов,

· трубы из алюминиевых сплавов,

· стальные высококачественные бесшовные трубы,

· новые высококачественные чугунные трубы,

· новые не оцинкованные трубы.

В основном трубы, используемые в гидросистемах технологического оборудования можно отнести к технически гладким.

Потери напора при турбулентном течении жидкости, как уже отмечалось ранее, могут быть определены по формуле Дарси

или в виде потерь давление на трение

Однако коэффициент потерь на трение по длине в этом случае будут значительно больше, чем при ламинарном движении.

Причём сам коэффициент будет существенно зависеть от числа Рейнольдса. Эту зависимость можно представить в виде графика.

Наиболее применимыми формулами для определения являются следующие эмпирические и полуэмпирические зависимости

применяемая для чисел Рейнольдса в пределах 2300 несколько миллионов, или

используемая в интервале 2300 100000.