Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FIZIKA_1-45.docx
Скачиваний:
7
Добавлен:
22.09.2019
Размер:
545.41 Кб
Скачать

Формула 1 — Закон Ампера

B индукция магнитного поля, в котором находится проводник с током

I сила тока в проводнике

dl бесконечно малый элемент длинны проводника с током

альфа угол между индукцией внешнего магнитного поля и направлением тока в проводнике

 Направление силы Ампера находится по правилу левой руки. Формулировка этого правела, звучит так. Когда левая рука расположена таким образом, что лини магнитной индукции внешнего поля входят в ладонь, а четыре вытянутых пальца указывают направление движения тока в проводнике, при этом отогнутый под прямым углом большой палец будет указывать направление силы, которая действует на элемент проводника.

Точечный заряд, двигающийся в магнитном поле. Циклотронная частота и ларморов радиус.

Любой проводник с током создает в окружающем пространстве магнитное поле. При этом электрический же ток является упорядоченным движением электрических зарядов. Значит можно считать, что любой движущийся в вакууме или среде заряд попрождает вокруг себя магнитное поле. В результате обобщения многочисленных опытных данных был установлен закон, который определяет поле В точечного заряда Q, движущегося с постоянной нерелятивистской скоростью v. Этот закон задается формулой   (1)  где r — радиус-вектор, который проведен от заряда Q к точке наблюдения М (рис. 1). Согласно (1), вектор В направлен перпендикулярно плоскости, в которой находятся векторы v и r : его направление совпадает с направлением поступательного движения правого винта при его вращении от v к r

Циклотронная частота (гирочастота, гиромагнитная частота)

- частота вращения нерелятивистской заряженной частицы вокруг силовых линий магн. поля B под действием Лоренца силы. Ц.ч. равна (в ед. СГС) q и m - заряд и масса частицы; употребляется также круговая Ц.ч.  . Для релятивистской частицы частота вращения меньше:   ,  где v и E - скорость и энергия частицы. В квантовой теории Ц.ч. определяет уровни энергии заряженной частицы в магн. поле (уровни Ландау):   ,  где pz - проекция импульса частицы на направление Bn=0, 1, 2, ... - номер уровня Ландау. В нерелятивистском пределе   . Вращаясь в магн. поле, частица испускает магнитотормозное излучение на гармониках Ц.ч., т.е. на частотах   (s=1, 2, ... - номер гармоники). Нерелятивистская частица излучает в основном на частоте   (Циклотронное излучение; в квантовой теории - это переход между соседними уровнями Ландау).

Ларморовский радиус (на английском также radius of gyration, gyroradius или cyclotron radius) обозначает радиус кругового движения заряжённой частицы в однородном магнитном поле.

Ларморовский радиус назван в честь ирландского физика Джозефа Лармора (Joseph Larmor).

Где

 Ларморовский радиус,  масса заряжённой частицы,  скорость, перпендикулярная линии магнитного поля,  заряд частицы,  магнитная индукция

Закон Ампера. Магнитная постоянная. Определение Ампера.

Ампер-час, внесистемная единица количества электричества. А.-ч. равен количеству электричества, проходящему через поперечное сечение проводника за 1 ч при силе электрического тока в 1 а

Закон Ампера устанавливает, что на проводник с током, помещенный в однородное магнитное поле, индукция которого В, действует сила, пропорциональная силе тока и индукции магнитного поля:

F = BIlsina (a - угол между направлением тока и индукцией магнитного поля ). Эта формула закона Ампера оказывается справедливой для прямолинейного проводника и однородного поля.

Если проводник имеет произвольную формулу и поле неоднородно, тоЗакон Ампера принимает вид:

dF = I*B*dlsina

Закон Ампера в векторной форме:

dF = I [dl B]

Сила Ампера направлена перпендикулярно плоскости, в которой лежат векторы dl и B.

Для определения направления силы, действующей на проводник с током, помещенный в магнитное поле, применяется правило левой руки.

Магнитная постоянная — физическая константа, скалярная величина,

  • определяющая плотность магнитного потока в вакууме;

  • входящая в выражения некоторых законов электромагнетизма при записи их в форме, соответствующей Международной системе единиц.

Иногда называют магнитной проницаемостью вакуума. Измеряется в генри на метр (или в ньютонах на ампер в квадрате). Магнитная постоянная равна:

 Гн/м   Н/А²

В материальных уравнениях, в вакууме, через магнитную проницаемость связаны вектор напряжённости магнитного поля H и вектор магнитной индукции B:

Закон полного тока. Магнитное поле внутри длинного соленоида.

 

З акон полного тока очень важен. Закон полного тока связывает ток и напряженность магнитного поля. Прямо сейчас изучим закон полного тока.

На картинке изображены два провода, по которым текут токи I1 и I2. Вокруг токов имеется контур L. А что такое этот контур? Это просто замкнутая линия, которую мы мысленно провели вокруг токов. Токи проходят через поверхность, ограниченную контуром L. В качестве положительного направления обхода контура выбираем направление по часовой стрелке.

Определение полного тока: полный ток - это алгебраическая сумма токов, проходящих через ограниченную замкнутым контуром поверхность.

В нашем примере полный ток Σ I есть сумма токов I1 и I2:

Σ I = I1 - I2

Знаки токов определяем по правилу буравчика.

Определение закона полного тока: магнитодвижущая сила F вдоль замкнутого контура L равна полному току Σ I, пронизывающему поверхность, ограниченную данным контуром. Формула закона полного тока:

F = Σ I

Особый интерес представляет магнитное поле внутри соленоида, длина которого значительно превосходит его диаметр. Внутри такого соленоида магнитная индукция имеет повсюду одно и то же направление, параллельное оси соленоида, и значит, линии поля параллельны между собой. Измеряя каким-нибудь способом магнитную индукцию в разных точках внутри соленоида, мы можем убедиться в том, что если витки соленоида расположены равномерно, то индукция магнитного поля внутри соленоида имеет во всех точках не только одинаковое направление, но и одинаковое числовое значение. Итак, поле внутри длинного равномерно навитого соленоида однородно. В дальнейшем, говоря о поле внутри соленоида, мы всегда будем иметь в виду подобные «длинные» равномерные соленоиды и не будем обращать внимания на отступления от однородности поля в областях, близких к концам соленоида. Подобные измерения, выполненные с разными соленоидами при различной силе тока в них, показали, что магнитная индукция поля внутри длинного соленоида пропорциональна силе тока I и числу витков, приходящихся на единицу длины соленоида, т. е. величине n=N/l, где N — полное число витков соленоида, l — его длина. Таким образом, (126.1) где m0 — коэффициент пропорциональности, называемый магнитной постоянной (ср. с электрической постоянной e0, § 11). Числовое значение магнитной постоянной

Магнитный поток. Закон электромагнитной индукции фарадея. Правило Ленца.

В однородном магнитном поле, модуль вектора индукции которого равен В, помещен плоский замкнутый контур площадью S. Нормаль n к плоскости контура составляет угол a с направлением вектора магнитной индукции В.

Магнитным потоком через поверхность называется величина Ф, определяемая соотношением:

Φ = B · S · cos α

Единица измерения магнитного потока в систем СИ - 1 Вебер (1 Вб).

1 Вб = 1 Тл · 1 м2

Магнитный поток через контур максимален,если плоскость контура перпендикулярна магнитному полю. Значит угол a равен 00 .

Тогда магнитный поток рассчитывается по формуле:

Φmax = B · S

Магнитный поток через контур равен нулю,если контур распологается параллельно магнитному полю.

Значит угол a равен 900 .

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Закон фарадея электромагнитной индукции выражается следующей формулой:

где

- это электродвижущая сила, действующая вдоль произвольно выбранного контура; ΦB — магнитный поток через поверхность, натянутую на этот контур.

Согласно правилу Ленца в формуле стоит знак «-» (минус). Правило Ленца гласит: индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Закон Фарадея для катушки, помещенной в переменное магнитное поле, выглядит немного иначе:

Где

  • — электродвижущая сила; N — число витков; ΦB — магнитный поток через один виток.

Правило Ленца - правило для определения направления индукционного тока: индукционный ток, возникающий при относительном движении проводящего контура и источника магнитного поля, всегда имеет такое направление, что его собственный магнитный поток компенсирует изменения внешнего магнитного потока, вызвавшего этот ток

Индукционный генератор тока.

Электрические машины, преобразующие механическую энергию в электрическую, называют генераторами. В современной энергетике применяют индукционные генераторы переменного тока, в которых используется явление электромагнитной индукции. Они позволяют получать большие токи при достаточно высоком напряжении.

Простейшей моделью такого генератора может служить рамка abcd (рис. 1), вращающаяся в однородном магнитном поле вокруг своей оси ОО', перпендикулярной индукции магнитного поля.

Рис. 1

Пусть в начальный момент времени t = 0 плоскость рамки перпендикулярна вектору магнитной индукции (рис. 1, а), ее пронизывает максимальный магнитный поток   При равномерном вращении рамки пронизывающий ее магнитный поток уменьшается. Вследствие этого, согласно закону электромагнитной индукции, в рамке возникает ЭДС индукции   Когда плоскость рамки станет параллельна вектору индукции магнитного поля (рис. 1, б), пронизывающий ее магнитный поток станет равным нулю   Скорость же изменения магнитного потока при прохождении рамки через это положение наибольшая, так как проводники рамки аЬ и cd движутся в этот момент перпендикулярно линиям индукции. Возникающая ЭДС индукции, пропорциональная скорости изменения магнитного потока, будет максимальная, и создаваемый ею в этом случае индукционный ток направлен (согласно правилу правой руки) от Ь к a и от d к с. При дальнейшем повороте рамки магнитный поток увеличивается, ЭДС, не изменяя своего знака, будет уменьшаться по величине и в положении (рис. 1, в)   так как при прохождении через это положение проводники витка аЬ и cd скользят вдоль линии поля, не пересекая их. Следовательно, ЭДС индукции, возникающая в контуре в этом случае,   При дальнейшем вращении рамки магнитный поток уменьшается. Скорость изменения магнитного потока увеличивается и ЭДС индукции возрастает. Согласно рисунку 1, г   и   но направление индукционного тока в витках (согласно правилу правой руки) совпадает с направлением от a к и от с к d(противоположно таковому на рис. 1, б). Это направление будет сохраняться и при дальнейшем движении рамки и начнет убывать, так как магнитный поток хотя и увеличивается, но скорость изменения его уменьшается.

При последующих оборотах рамки все эти явления будут повторяться вновь. Таким образом, ЭДС индукции во вращающейся рамке за один оборот изменяется от   до 

Выясним, по какому закону будет изменяться ЭДС индукции в рамке площадью S, если рамка вращается с постоянной угловой скоростью ω (ω = const) в однородном магнитном поле с индукцией   вокруг оси, расположенной в плоскости рамки и перпендикулярной вектору 

За время t рамка повернется на угол   и угол между нормалью к рамке и вектором магнитной индукции будет   Магнитный поток, пронизывающий рамку, в момент времени t равен 

Чтобы использовать переменный ток, рамки соединяют с двумя изолированными кольцами, к кольцам прижимают щетки, к которым присоединяют контакты внешней цепи (рис. 3).

Рис. 3

Мы рассмотрели принцип работы генератора переменного тока. Устройство генератора переменного тока гораздо сложнее. В настоящее время имеется много различных типов индукционных генераторов. Однако в каждом из них есть одни и те же основные части: 1) электромагнит (или постоянный магнит), создающий магнитное поле. Он называется индуктором;

2) обмотка, в которой индуцируется ЭДС. Эта часть носит название якорь;

3) состоящий из металлических колец коллектор;

4) щетки, соединяющие неподвижные проводники с вращающимися проводниками.

Неподвижная часть генератора называется статором. В описанном случае статором является индуктор. Подвижная часть генератора — ротор. В рассмотренном случае ротором является якорь. Для получения ЭДС индукции важно относительное перемещение проводника и магнитного поля. Поэтому на практике индуктор делают вращающимся, а якорь — неподвижным. Это вызвано тем, что с помощью подвижных контактов практически невозможно отводить от генератора токи высокого напряжения (большой амплитуды) из-за сильного искрения в подвижных контактах. Индуктором же является электромагнит, для питания которого нужен сравнительно слабый постоянный ток, и при таком слабом токе скользящие контакты хорошо работают.

Индуктивность соленоида. Самоиндукция.

Если в контуре течет переменный ток, то в этом контуре возникает ЭДС индукции, так как ток создает через контур переменный магнитный поток, величина которого изменяется в соответствии с изменениями тока. Возникающая ЭДС создает дополнительный ток в контуре. Это явление называется самоиндукцией, а дополнительные токи - экстратоками самоиндукции. Индукция магнитного поля пропорциональна току, следовательно, величина магнитного потока через контур также пропорциональна току: Ф=LI      (3.12) где L - коэффициент самоиндукции или индуктивность контура, зависящая от формы и размеров, атакже от свойств окружающей среды. Применяя к явлению самоиндукции закон электромагнитной индукции Фарадея, получим:        (3.13)  ЭДС самоиндукции, возникающая в контуре при изменении тока в нем, прямо пропорциональна скорости изменения этого тока. Индуктивность контура численно равна ЭДС самоиндукции, возникающей в нем при изменении тока на единицу за единицу времени. Индуктивность является аналогом массы, так как чем больше индуктивность, тем труднее изменить силу тока в контуре.  В системе СИ индуктивность измеряется в генри (Гн). 1 Гн - это индуктивность такого контура, вкотором возникает ЭДС самоиндукции 1 В при изменении тока в нем на 1 А за 1 с. В качестве примера вычислим индуктивность катушки (соленоида). Пусть число витков соленоида – N, площадь поперечного сечения витка - S, длина соленоида - l, а полость соленоида заполнена средой с относительной магнитной проницаемостью µ. При протекании по обмотке соленоида тока I внутри соленоида возникает однородное поле, индукция которого        (3.14)  где n= N/l - число витков на единицу длины катушки. Магнитный поток через каждый из витков равен ВS, а через все витки       (3.15)  Подставляя значение В из (3.14), получим:                                (3.16)  Сравнивая (3.12) и (3.16), имеем           (3.17) где V = lS - объем соленоида,  = 4 ?*  Гн/м - магнитная постоянная.

 

Энергия соленоида с током.

Эту формулу можно получить графическим методом, изобразив на графике зависимость магнитного потока Φ (I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, равное первоначальному запасу энергии магнитного поля, определяется площадью изображенного на рис. 1.21.2 треугольника.

Рисунок 1.21.2.

Вычисление энергии магнитного поля

Таким образом, энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна 

Применим полученное выражение для энергии катушки к длинному соленоиду с магнитным сердечником.

Используя приведенные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, можно получить: 

где V – объем соленоида. Это выражение показывает, что магнитная энергия локализована не в витках катушки, по которым протекает ток, а рассредоточена по всему объему, в котором создано магнитное поле. Физическая величина 

равная энергии магнитного поля в единице объема, называется объемной плотностью магнитной энергииДж. Максвелл показал, что выражение для объемной плотности магнитной энергии, выведенное здесь для случая длинного соленоида, справедливо для любых магнитных полей.

Плотность энергии магнитного поля.

Проводник, c протекающим по нему электрическим ток, всегда окружен магнитным полем, причем магнитное поле исчезает и появляется вместе с исчезновением и появлением тока. Магнитное поле, подобно электрическому, является носителем энергии. Логично предположить, что энергия магнитного поля совпадает с работой, затрачиваемой током на создание этого поля.  Рассмотрим контур индуктивностью L, по которому протекает ток I. С этим контуром сцеплен магнитный поток Ф=LI, поскольку индуктивность контура неизменна, то при изменении тока на dI магнитный поток изменяется на dФ=LdI. Но для изменения магнитного потока на величину dФ следует совершить работу dА=IdФ=LIdI. Тогда работа по созданию магнитного потока Ф равна    Значит, энергия магнитного поля, которое связано с контуром,   (1)  Энергию магнитного поля можно рассматривать как функцию величин, которые характеризуют это поле в окружающем пространстве. Для этого рассмотрим частный случай — однородное магнитное поле внутри длинного соленоида. Подставив в формулу (1) формулу индуктивности соленоида, найдем    Так как I=Bl/(μ0μN) и В=μ0μH , то   (2)  где Sl = V — объем соленоида.  Магнитное поле внутри соленоида однородно и сосредоточено внутри него, поэтому энергия (2) заключена в объеме соленоида и имеет с нем однородное распределение с постоянной объемной плотностью   (3)  Формула (3) для объемной плотности энергии магнитного поля имеет вид, аналогичный выражению для объемной плотности энергии электростатического поля, с тем отличием, что электрические величины заменены в нем магнитными. Формула (3) выводилась для однородного поля, но она верна и для неоднородных полей. Формула (3) справедлива только для сред, для которых линейная зависимость В от Н , т.е. оно относится только к пара- и диамагнетикам. 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]