
- •1.Множества. Операции над множествами. Применение операций над множествами при решении задач.
- •2.Свойства операций над множествами. Примеры.
- •3. Числовые множества и их свойства. Числовая прямая и множества на ней.
- •4.Арифметические векторы. Линейные операции над векторами. Скалярное произведение векторов и его свойства. Ы-мерное векторное пространство.
- •5.Угол между векторами. Условие перпендикулярности векторов. Условие коллинеарности векторов.
- •Линейные операции над матрицами
- •7.Транспонирование матриц
- •Умножение матриц
- •8. Ранг матрицы
- •9. Определители второго и третьего порядков. Способы их вычисления.
- •10. Миноры и алгебраические дополнения. Определитель п-го порядка. Разложение определителя по элементам ряда.
- •Миноры и алгебраические дополнения
- •11. Свойства определителей. Вычисление определителя с использованием его свойств.
- •12. Обратная матрица. Метод нахождения обратной матрицы по формуле.
- •13.Обратная матрица. Метод нахождения обратной матрицы по методу Гаусса.
- •14. Системы линейных алгебраических уравнений. Теорема Кронекера-Капелли. Бесконечное множество решений. . Основные понятия Общий вид и свойства системы уравнений
- •15.Решение систем линейных алгебраических уравнений по формулам Крамера.
- •16.Решение систем линейных алгебраических уравнений методом обратной матрицы
- •17. Матрица системы линейных уравнений. Расширенная матрица системы. Решение системы линейных уравнений методом Гаусса. Матричная форма системы уравнений
- •18.Однородная система линейных уравнений и её фундаментальная система решений.
- •19. Собственные значения и собственные векторы матрицы. Характеристическое уравнение матрицы.
- •2.7. Собственные значения
- •2.8. Собственные векторы
8. Ранг матрицы
Рангом матрицы А обозначается r(А)= rang(А) называется число не нулевых строк диагональной матрицы
Свойства ранга матрицы:
Если матрица А имеет размер m*n то ранг матрицы не превышает наименьшее из чисел m,n.
Ранг матрицы А=0 тогда и только тогда когда все элементы А=0 r(А)=0
Если А квадратичная порядка n то ранг =n, тогда и только тогда когда определ. матрицы 0
9. Определители второго и третьего порядков. Способы их вычисления.
Понятие определителя
Любой квадратной матрице А порядка n ставится в соответствие по определенному закону некоторое число, называемое определителем, или детерминантом, n-го порядка этой матрицы. Начнем с определителей второго и третьего порядков.
Пусть дана матрица
тогда ее определитель второго порядка вычисляется по формуле
Правило вычисления определителя второго порядка очевидно: из произведения элементов на главной диагонали вычитается произведение элементов на второй диагонали матрицы А. Нетрудно видеть, что формула (14.1) представляет собой алгебраическую сумму двух попарных произведений элементов матрицы А, стоящих в разных строках и разных столбцах.
В дальнейшем мы не будем приводить матрицу, для которой вычисляется определитель, так как в записи определителя содержатся все элементы соответствующей матрицы.
Определитель третьего порядка вычисляется по формуле
Правило вычисления определителя третьего порядка следующее. Это алгебраическая сумма шести тройных произведений элементов, стоящих в разных строках и разных столбцах; со знаком плюс берутся произведения, сомножители которых находятся на главной диагонали и в вершинах треугольников, чьи основания параллельны главной диагонали; со знаком минус — произведения, сомножители которых стоят на не главной диагонали и в вершинах треугольников с основаниями, параллельными этой диагонали (рис. 14). Заметим, что каждое слагаемое в формуле (14.2) содержит по одному элементу из каждой строки и каждого столбца соответствующей матрицы.
10. Миноры и алгебраические дополнения. Определитель п-го порядка. Разложение определителя по элементам ряда.
Рассмотрим определитель n-го порядка
Теперь с учетом подмеченных выше закономерностей перейдем к определению для общего случая.
Определение 1. Определителем матрицы А n-го порядка называется алгебраическая сумма n! произведений n-го порядка элементов этой матрицы, причем в каждое произведение входит по одному элементу из каждой строки и каждого столбца данной матрицы.
Миноры и алгебраические дополнения
Рассмотрим определитель n-го порядка (14.3). Выделим в нем какой-либо элемент аij и вычеркнем i-ю строку и j-й столбец, на пересечении которых расположен этот элемент. Полученный определитель (n - 1)-го порядка называется минором Mij элемента aij определителя Δn.
Пример 1. Найти минор М32 определителя четвертого порядка
Решение. Минор М32 элемента a32 получается вычеркиванием из данного определителя 3-й строки и 2-го столбца. Полученный определитель 3-го порядка равен
Определение 2. Алгебраическим дополнением элемента aij определителя (14.3) называется число
Так, для приведенного выше примера алгебраическое дополнение равно
Миноры и алгебраические дополнения играют важную роль в алгебре и ее приложениях. Одним из таких применений является основополагающая теорема о способе вычисления определителей.
ТЕОРЕМА 1. Определитель равен сумме произведений элементов любой строки на их алгебраические дополнения:
Формула (14.4) называется разложением определителя по i-й строке. Доказательство этой теоремы мы опускаем. Аналогичное утверждение имеет место и для разложения определителя по любому столбцу.
Формула (14.4) сводит вычисление определителя n-го порядка к вычислению n определителей (n - 1)-го порядка. Зная формулу (14.2) вычисления определителя 3-го порядка, мы, например, можем найти определитель 4-го порядка путем разложения его на сумму алгебраических дополнений по формуле (14.4).
Пример 2. Вычислить определитель 4-го порядка
Решение. В принципе, разложить определитель можно по любой строке (столбцу), согласно формуле (14.4). Однако объем вычислений можно существенно уменьшить, если выбрать такую строку (столбец), в которой побольше элементов равно нулю. Наиболее подходящей в нашем случае является вторая строка. Разложение по ней определителя имеет вил