
- •1.Множества. Операции над множествами. Применение операций над множествами при решении задач.
- •2.Свойства операций над множествами. Примеры.
- •3. Числовые множества и их свойства. Числовая прямая и множества на ней.
- •4.Арифметические векторы. Линейные операции над векторами. Скалярное произведение векторов и его свойства. Ы-мерное векторное пространство.
- •5.Угол между векторами. Условие перпендикулярности векторов. Условие коллинеарности векторов.
- •Линейные операции над матрицами
- •7.Транспонирование матриц
- •Умножение матриц
- •8. Ранг матрицы
- •9. Определители второго и третьего порядков. Способы их вычисления.
- •10. Миноры и алгебраические дополнения. Определитель п-го порядка. Разложение определителя по элементам ряда.
- •Миноры и алгебраические дополнения
- •11. Свойства определителей. Вычисление определителя с использованием его свойств.
- •12. Обратная матрица. Метод нахождения обратной матрицы по формуле.
- •13.Обратная матрица. Метод нахождения обратной матрицы по методу Гаусса.
- •14. Системы линейных алгебраических уравнений. Теорема Кронекера-Капелли. Бесконечное множество решений. . Основные понятия Общий вид и свойства системы уравнений
- •15.Решение систем линейных алгебраических уравнений по формулам Крамера.
- •16.Решение систем линейных алгебраических уравнений методом обратной матрицы
- •17. Матрица системы линейных уравнений. Расширенная матрица системы. Решение системы линейных уравнений методом Гаусса. Матричная форма системы уравнений
- •18.Однородная система линейных уравнений и её фундаментальная система решений.
- •19. Собственные значения и собственные векторы матрицы. Характеристическое уравнение матрицы.
- •2.7. Собственные значения
- •2.8. Собственные векторы
7.Транспонирование матриц
Транспонированием матрицы называется замена строк матрицы на ее столбцы с сохранением их порядка (или, что то же самое, замена столбцов матрицы на ее строки). Пусть дана исходная матрица А:
Тогда, согласно определению, транспонированная матрица А' имеет вид
Сокращенная форма записи операции транспонирования матрицы:
Пример 3. Пусть даны матрицы А и В:
Тогда соответствующие транспонированные матрицы имеют вид
Нетрудно заметить две закономерности операции транспонирования матриц.
1. Дважды транспонированная матрица равна исходной матрице:
2. При транспонировании квадратных матриц элементы, находящиеся на главной диагонали, не меняют своих позиций, т.е. главная диагональ квадратной матрицы не меняется при транспонировании.
Важную роль в алгебре и ее приложениях играют симметрические матрицы — квадратные матрицы, у которых элементы, симметричные относительно главной диагонали, равны, т.е. aij = aji. Транспонирование таких матриц не меняет их вида, так что равенство
также можно полагать определением симметрической матрицы.
Умножение матриц
1. Умножение матриц — это специфическая операция, составляющая основу алгебры матриц. Строки и столбцы матриц можно рассматривать как векторы-строки и векторы-столбцы соответствующих размерностей: иными словами, любую матрицу можно интерпретировать как совокупность векторов-строк или векторов-столбцов.
Пусть даны матрица
А
размером т
х
п и матрица
В
размером п
х k.
Будем рассматривать матрицу А
как совокупность т
векторов-строк
i
размерности п
каждый, а матрицу В
— как
совокупность k
векторов-столбцов
j,
каждый из которых содержит по п
координат:
Векторы-строки матрицы А и векторы-столбцы матрицы В показаны в записи этих матриц (13.3). Длина строки матрицы А равна высоте столбца матрицы В, и потому скалярное произведение этих векторов имеет смысл.
Определение 3. Произведением матриц А и В называется матрица С, элементы которой cij равны скалярным произведениям векторов-строк i матрицы А на векторы-столбцы j матрицы В:
Произведение
матриц А
и В —
матрица С —
имеет размер т
х k,
поскольку длина п
векторов-строк и векторов-столбцов
исчезает при суммировании произведений
координат этих векторов в их скалярных
произведениях, как показано в формулах
(13.4). Таким образом, для вычисления
элементов первой строки матрицы С
необходимо последовательно получить
скалярные произведения первой строки
матрицы А
на все столбцы матрицы В;
вторая строка матрицы С
получается как скалярные произведения
второй вектор-строки матрицы А
на все
векторы-столбцы матрицы В
и так далее. Для удобства запоминания
размера произведения матриц нужно
перемножить отношения размеров
матриц-сомножителей:
,
т.е. размер матрицы С
равен произведению оставшихся в отношении
чисел: т
х k.
В операции умножения матриц есть характерная особенность: произведение матриц А и В имеет смысл, если число столбцов в А равно числу строк в В. Тогда если А и В — прямоугольные матрицы, то произведение В и А уже не будет иметь смысла, так как в скалярных произведениях, формирующих элементы соответствующей матрицы, должны участвовать векторы с одинаковым числом координат.
Если матрицы А и В квадратные размером n х n, то имеет смысл как произведение матриц АВ, так и произведение матриц BA, причем размер этих матриц такой же, как и у исходных сомножителей. При этом в общем случае перемножения матриц правило перестановочности не соблюдается, т.е. АВ ≠ ВА.
Рассмотрим примеры на умножение матриц.
Решение. Поскольку число столбцов матрицы А равно числу строк матрицы В, то произведение матриц АВ имеет смысл. По формулам (13.4) получаем в произведении матрицу размером 3 х 2:
Произведение ВА не имеет смысла, так как число столбцов матрицы В не совпадает с числом строк матрицы А.