- •Определение аис, структура, характеристика, классификация.
- •2 Жизненный цикл аис: понятие, структура, стадии и процессы жизненного цикла
- •3 Модели жц аис. Каскадная и спиральнаясхемы проектирования аис. Положительные стороны и недостатки.
- •4 Требования к технологии проектирования, разработки и сопровождения аис
- •Требования к сопровождению
- •5 Структурный и обьектно-ориентированный подход к проектирования аис
- •6 Разработка технического задания
- •7 Методология проектирования аис rad
- •Преимущества:
- •8 Методология проектирования аис sadt
- •Недостатки
- •Основные функции субд
- •13 Основные типы моделей данных.
- •14 Основные этапы проектирования Баз Данных
- •Dhcp-сервер
- •Управление dhcp из командной строки
- •Виды dns-запросов:
- •База данных wins
- •Сжатие базы данных
- •Архивирование базы данных wins
- •Файлы базы данных wins
- •Языки описания архитектуры - используются для описания архитектуры программного обеспечения.
- •Файловый сервер -выделенный сервер, оптимизированный для выполненияфайловых операций ввода-вывода. Предназначен для хранения файлов любого типа. Обладает большим объемом дискового пространства.
- •Архитектура «файл-сервер»
- •Преимущества серверов приложений:
- •27 Технология «клиент сервер»
- •Преимущества
- •Недостатки
- •28 Основные технологии построения рапределенных систем (сом, dcom, corba).
- •Принципы работы com
- •Технологии, основанные на стандарте com dcoMпозволяет com-компонентам взаимодействовать друг с другом по сети. Главным конкурентом dcom является другая известная распределённая технология — corba.
- •1 Основные характеристики эвм, порядок их определения
- •2 Основная память. Состав, организация и принципы работы.
- •Функции памяти
- •Классификация типов памяти
- •Доступные операции с данными
- •Метод доступа
- •Назначение
- •Организация адресного пространства
- •Удалённость и доступность для процессора
- •Управление процессором
- •3 Система счисления
- •Позиционные системы счисления
- •4 Система прерываний эвм
- •Система прерываний эвм
- •5 Принципы управления внешним устройством
- •1)Узлы устройств
- •2)Классы устройств
- •3)База данных конфигурации устройств
- •Состояние устройств
- •6 Виды интерфейса в аппаратном комплексе.
- •Примеры
- •7 Прямой доступ к памяти
- •8 Способы организации совместной работы периферийных устройств и центральных устройств
- •9 Видеоподсистема эвм. Состав, виды и назначение устройств.
- •10 Архитектура вычислительной системы
- •Современную архитектуру компьютера определяют принципы:
- •Классификация по назначению
- •МиниЭвм
- •МикроЭвм
- •Классификация по уровню специализации
- •Классификация по размеру
- •Классификация по совместимости
- •11 Дисковая подсистема эвм
- •Интерфейс esdi
- •Интерфейс scsi
- •Интерфейс scsi-II
- •Интерфейс ide
- •12 Устройства вывода информации на печать.
- •13 Сканер. Принцип действия, основные характеристики.
- •В культуре
- •Интерфейс
- •1 Архитектура и топология локальных вычислительных сетей Архитектура лвс
- •Шинная топология
- •Древовидная структура лвс
- •Еthernet-кабель
- •Сheapernеt-кабель
- •Оптоволоконные линии
- •Сетевая карта
- •Репитер
- •Локальная сеть Token Ring
- •Локальная сеть Ethernet
- •2 Проводные и беспроводные технологии компьютерных сетей
- •Отличия проводных и беспроводных технологий передачи данных
- •3.Физическая среда передачи данных Основные типы кабельных и беспроводных сред передачи данных
- •Оптоволоконный кабель
- •Кодирование сигналов
- •Плата сетевого адаптера (са)
- •Типы и компоненты беспроводных сетей
- •Передача "точка-точка"
- •4 Сетевое передающие оборудование
- •Параметры сетевого адаптера
- •Функции и характеристики сетевых адаптеров
- •Активное сетевое оборудование
- •Пассивное сетевое оборудование
- •5 Эталонная модель взаимодействия открытых систем osi
- •6 Протоколы локальных сетей
- •Распространенные протоколы
- •Набор протоколов osi
- •7 Архитектура стека протоколов tcp/ip
- •[Править]Физический уровень
- •[Править]Канальный уровень
- •[Править]Сетевой уровень
- •Транспортный уровень
- •Прикладной уровень
- •8 Методы доступа в сети
- •1. Метод Ethernet
- •2. Метод Archnet
- •3. Метод TokenRing
- •Способы коммутации и передачи данных
- •Характеристики способов передачи данных.
- •Адресация и маршрутизация пакетов данных. Способы адресации в сетях
- •Маршрутизация пакетов данных
- •К лассификация алгоритмов маршрутизации.
- •9 Адресация в компьютерных сетях
- •10 Сетевые ос
- •Основное назначение
- •11 Защита информации
- •1 Алгоритмы: определение алгоритма, свойства, формы записи.
- •Свойства алгоритма.
- •2 Способы описания алгоритмов. Описание алгоритмов с помощью языка блок схем. Правила составления блок схем
- •Язык блок-схем
- •Язык блок-схем прост (хотя существуют его расширенные варианты):
- •Основные элементы схем алгоритма:
- •3 Алгоритм базовые структуры
- •4 Данные. Понятие типа Данных
- •5 Языки программирования: эволюция, классификация
- •Начало развития
- •Структурное программирование
- •6 Языки программирования и системы программирования. Назначение и состав системы программирования.
- •Условный оператор if
- •Оператор варианта case
- •Цикл с предусловием while
- •Цикл с постусловием repeat
- •Цикл с параметром for
- •Рекомендации по использованию циклов
- •Виды циклов:
- •1)Безусловные циклы
- •4)Цикл с выходом из середины
- •Циклы pascal
- •Арифметические циклы
- •Итерационные циклы с предусловием
- •Итерационные циклы с постусловием
- •Операторы завершения цикла
- •Конструкторы и деструкторы
- •10 Основные понятия структурного программирования.
- •11 Методы построения алгоритмов.
- •12 Массивы: понятие, виды, описание.
- •Динамические библиотеки
- •Статические библиотеки
Примеры
Автоматизированное рабочее место оператора
Контроль доступа и видеонаблюдение
Система распознавания образов
Комплекс медицинской диагностики
Комплекс защиты конфиденциальной информации
Автоматизированное рабочее место конструктора/технолога
ПАСУ
IBM PC-совместимый компьютер - концепция доступной универсальной ЭВМ, коммерчески-реализованная фирмой IBM.
Интернет, базируется на концепции модели OSI.
Поиско́вая систе́ма — программно-аппаратный комплекс с веб-интерфейсом, предоставляющий возможность поиска информации в Интернете. Под поисковой системой обычно подразумевается сайт, на котором размещён интерфейс (фронт-энд) системы. Программной частью поисковой системы является поисковая машина (поисковый движок) — комплекс программ, обеспечивающий функциональность поисковой системы и обычно являющийся коммерческой тайной компании-разработчика поисковой системы.
По данным компании Net Applications,[1] в ноябре 2011 года использование поисковых систем распределялось следующим образом:
Google — 83,87 %;
Yahoo! — 6,20 %;
Baidu — 4,22 %;
Bing — 3,69 %;
Yandex — 1,7 %;
Ask — 0,57 %;
AOL — 0,36 %.
7 Прямой доступ к памяти
Прямой доступ к памяти (англ. Direct Memory Access, DMA) — режим обмена данными между устройствами или между устройством и основной памятью (RAM) без участия Центрального Процессора (ЦП). В результате скорость передачи увеличивается, так как данные не пересылаются в ЦП и обратно.
Данные пересылаются сразу для многих слов, расположенных по подряд идущим адресам, что позволяет использование «пакетного» (burst) режима работы шины — 1 цикл адреса и следующие за ним многочисленные циклы данных.
DMA-контроллер может получать доступ к системной шине независимо от центрального процессора. Контроллер содержит несколько регистров, доступных центральному процессору для чтения и записи. Регистры контроллера задают порт (который должен быть использован), направление переноса данных (чтение/запись), единицу переноса (побайтно/пословно), число байтов, которое следует перенести.
ЦП программирует контроллер DMA, устанавливая его регистры. Затем процессор даёт команду устройству (например, диску) прочитать данные во внутренний буфер. DMA-контроллер начинает работу, посылая устройству запрос чтения (при этом устройство даже не знает, пришёл ли запрос от процессора или от контроллера DMA). Адрес памяти уже находится на адресной шине, так что устройство знает, куда следует переслать следующее слово из своего внутреннего буфера. Когда запись закончена, устройство посылает сигнал подтверждения контроллеру DMA. Затем контроллер увеличивает используемый адрес памяти и уменьшает значение своего счётчика байтов. После чего запрос чтения повторяется, пока значение счётчика не станет равно нулю. По завершении цикла копирования устройство инициирует прерывание процессора, означающее завершение переноса данных. Контроллер может быть многоканальным, способным параллельно выполнять несколько операций.
Контроллер прямого доступа к памяти.
Прямой доступ к памяти (DMA) - метод непосредственного обращения к памяти, минуя процессор. Процессор отвечает только за программирование DMA: настройку на определенный тип передачи, задание начального адреса и размера массива обмениваемых данных. DMA используется для обмена массивами данных между системной памятью и устройствами ввода-вывода.
Обмен данными между процессором и устройствами ввода-вывода осуществляется по системной шине, "хозяином" которой является процессор. При использовании контроллера DMA на время обмена данными он должен получить управление системной шиной, т.е. стать ее "хозяином". По окончании обмена подсистема DMA возвращает процессору право управления шиной.
Архитектура компьютера PC AT включает в себя подсистему DMA, состоящую из двух контроллеров DMA Intel 8237, регистра старшего адреса DMA и регистров страниц DMA. Эти контроллеры обеспечивают 7 каналов DMA.
Система обеспечивает передачу данных по каналам DMA как по одному байту за цикл DMA, так и по два байта за цикл, исходя из возможностей архитектуры процессора (двухбайтной шины данных). Чтобы сохранить преемственность подсистемы DMA в PC AT с аналогичной подсистемой в PC XT каскадирование "байтного" контроллера DMA с распределением каналов XT осуществляется через "словный" контроллер DMA.
Общий алгоритм ПДП.
Для осуществления прямого доступа к памяти контроллер должен выполнить ряд операций:
принять запрос (DREQ) от устройства ввода-вывода;
сформировать запрос (HRQ) в процессор на захват шины;
принять сигнал (HLDA), подтверждающий захват шины;
сформировать сигнал (DACK), сообщающий устройству о начале обмена данными;
выдать адрес ячейки памяти, предназначенной для обмена;
выработать сигналы (MEMR, IOW или MEMW, IOR), обеспечивающие управление обменом;
по окончании цикла DMA либо повторить цикл DMA, изменив адрес, либо прекратить цикл.
Формирование адреса памяти.
Контроллеры DMA обеспечивают формирование только 16 младших разрядов адреса памяти. Причем старшая часть адреса (А15-А8 для DMA1 или А16-А9 для DMA2) во время цикла DMA по шине данных поступает в регистр старшего адреса DMA и далее на шину адреса, а младшая часть адреса (А7-А0 для DMA1 или А8-А1 для DMA2) выдается на шину адреса непосредственно из контроллера. Восемь старших разрядов адреса памяти содержатся в регистре страниц DMA. Разряд А16 из регистра страниц DMA запрещается, когда выбран DMA2. Разряд A0 не связан с DMA2 и всегда содержит нуль при передаче слова.
Это означает, что:
размер блока данных, который может быть передан или адресован, измеряется не байтами (8 бит), а словами (16 бит);
слова всегда должны быть расположены на четной границе.
Таким образом, контроллер DMA и регистр страниц определяют 24-разрядный адрес, что обеспечивает передачу данных в пределах адресного пространства 16 М байт.