
- •Rodzaje badań statystycznych
- •Szeregi statystyczne
- •Szereg szczegółowy ważony
- •Szereg rozdzielczy
- •Rachunek prawdopodobieństwa
- •Rozkład prawdopodobieństwa skokowej zmiennej losowej X spełnia następujące warunki
- •Oczekiwana wartość I odchylenie standardowe zmiennej losowej
- •Wariancja I odchylenie standardowe zmiennej losowej
- •Twierdzenie Czebyszewa
- •Wybrane rozkłady zmiennej losowej skokowej
- •Rozkład jednopunktowy
- •Rozkład dwupunktowy
- •Rozkład dwumianowy
- •Średnia, wariancja I kształt rozkładu dwumianowego
- •Rozkład Poissona
- •Zmienna losowa ciągła I jej rozkłady
- •Rozkłady zmiennej losowej ciągłej
- •Rozkład chi – kwadrat
- •Rozkład t – Studenta
- •Rozkład f – Snedecora
- •Estymacja punktowa I przedziałowa
- •Pobieranie próby losowej
- •Trzy główne aspekty centralnego twierdzenia granicznego
- •Estymatory I ich własności
- •Estymacja przedziałowa parametrów
- •Weryfikacja hipotez statystycznych
- •Hipotezy alternatywne mogą być sformułowane względem hipotezy zerowej
- •Weryfikacja hipotez statystycznych Podstawowe pojęcia
- •Test dla dwóch średnich
- •Test dla wariancji
- •Test dla dwóch wariancji
- •Test dla wskaźnika struktury
- •Test dla dwóch wskaźników struktury
- •Parametryczne testy istotności – Przykłady
- •Testy nieparametryczne
- •Test zgodności - Kołmogorowa
- •Analiza korelacji I regresji .
- •Wyniki obserwacji pogrupowano I zamieszczono w poniższej tablicy
Szeregi statystyczne
Materiał liczbowy , otrzymany w wyniku przeprowadzonej obserwacji statystycznej lub pomiaru, po opracowaniu i pogrupowaniu nazywamy szeregiem strukturalnym, charakteryzuje on zbiorowość statystyczną pod względem wyróżnionej cechy jakościowej i ilościowej.
Wyróżnia się dwa typy grupowania : grupowanie typologiczne ( według cechy jakościowej ) oraz grupowanie wariancyjne ( według cechy ilościowej )
Szeregiem szczegółowym prostym nazywamy uporządkowany nierosnąco lub niemalejąco ciąg wartości badanej zmiennej. Oznaczmy symbolem X badaną zmienną , symbolem xi ( i=1,2,...,n) wartość tej zmiennej odpowiadającą i-tej jednostce statystycznej. Załóżmy, że badano n jednostek statystycznych. Ciąg wartości tej zmiennej ;
x1 , x2, ..., xn
określa się szeregiem szczegółowym prostym, jeśli w powyższym ciągu każdy następny element nie jest mniejszy od poprzedniego.
Przykład 1.
Załóżmy , że w pewnej miejscowości poddano obserwacji 16 rodzin ze względu na liczbę dzieci i otrzymano następujące wyniki :
0,1,1,2,2,3,3,3,4,4,4,5,5,6,6,7
Powyższy ciąg wartości jest uporządkowany niemalejąco, jest więc szeregiem szczegółowym prostym. W tym przypadku jednostką statystyczną jest rodzina, a cechą liczba dzieci w rodzinie
Wśród szeregów strukturalnych cechy ilościowej wyróżnia się szereg szczegółowy ważony oraz rozdzielczy.
Szereg szczegółowy ważony
Załóżmy, że wśród danych zawartych w szeregu szczegółowym prostym wyróżniono k różnych wartości. Następnie grupujemy jednostki statystyczne odpowiadające jednakowym wartościom cechy. Postępując w ten sposób otrzymujemy wyniki, które można zaprezentować w poniższej tablicy
Tab. 1 Wyniki grupowania statystycznego
Wartości cechy xi |
Liczebność f i |
Częstość względna fi / n |
x1 x2 . . . xk |
f1 f2 . . . fk |
f1 / n f2 / n . . . fk / n |
Razem |
|
|
Źródło; opracowanie włane
Druga i trzecia kolumna tej tablicy charakteryzuje strukturę zbiorowości n- elementowej pod względem cechy X. Symbolem fi oznaczamy liczbę jednostek statystycznych , dla których wartość cechy przyjęła wartość xi ( i = 1,2,...,n). Wartość tę nazywamy liczebnością. Trzecia kolumna zawiera wielkości zwane liczebnościami względnymi lub frakcjami. Suma tych wielkości jest równa 1. Mnożąc te wielkości przez 100, otrzymujemy częstości w procentach . Częstości względne są wielkościami niemianowanymi. Mogą być wykorzystane do porównań struktur zbiorowości różniących się liczebnościami. Liczebności lub częstości zawarte w przedostatniej i ostatniej kolumnie tej tablicy charakteryzują rozkład elementów zbiorowości pod względem danej cechy , lub rozkład cechy.