
- •1. Введение
- •2. Дискретизация аналоговых сигналов
- •2.1 Квантование по уровню
- •2.2 Квантование по времени
- •2.3 Квантование по уровню и по времени
- •2.3.1 Расчет погрешности ацп
- •2.3.2 Выбор величины шага квантования по времени
- •3. Применение алгебры логики (булевой алгебры) при анализе и синтезе цифровых электронных устройств
- •3.1 Определение и способы задания переключательных функций
- •3.4 Базисные логические функции
- •3.5 Принцип двойственности булевой алгебры
- •3.8 Совершенная дизъюнктивная нормальная форма (сднф) записи булевых выражений
- •3.9 Дизъюнктивная нормальная форма (днф)
- •3.10 Совершенная конъюнктивная нормальная форма (скнф) записи булевых выражений
- •3.11 Конъюнктивная нормальная форма (кнф)
- •3.12 Минимизация логических функций
- •3.12.1 Алгебраический способ минимизации пф
- •3.12.2 Минимизация пф с использованием диаграмм Вейча (карт Карно)
- •3.12.2.1 Минимизация пф с помощью диаграмм Вейча
- •3.12.2.1.1 Общие правила минимизации
- •3.12.2.1.2 Примеры минимизации пф с помощью диаграмм Вейча
- •3.12.2.2 Минимизация пф с помощью карт Карно
- •4. Логические элементы
- •4.1 Инвертор (логический элемент не)
- •4.2 Конъюнктор (логический элемент и)
- •4.3 Дизъюнктор (логический элемент или)
- •4.4 Повторитель
- •4.7 Исключающее или
- •4.8 Сложение по модулю два (нечетность)
- •4.9 Сложение по модулю два с отрицанием (четность)
- •4.10 Эквивалентность
- •4.11 Неэквивалентность
- •4.13 Запрет
- •4.14 Логические элементы с открытым коллектором
- •4.15 Логические элементы с третьим состоянием
- •5. Реализация логических функций в разных базисах
- •5.1 Базисные наборы лэ и их взаимосвязь
- •5.2 Реализация логических функций в различных базисах
- •5.2.1 Реализация элемента “Равнозначность” (исключающее или - не)
- •5.2.2 Реализация элемента “Неравнозначность” (исключающее или, сумма по модулю два)
- •5.2.3 Реализация элемента “Запрет”
- •5.2.4 Реализация многобуквенных логических функций на элементах с небольшим количеством входов
- •6. Параметры и характеристики цифровых интегральных микросхем (имс)
- •6.1 Коэффициент объединения по входу (Коб)
- •6.2 Коэффициент разветвления по выходу (Краз)
- •6.3 Статические характеристики
- •6.4 Помехоустойчивость
- •6.5 Динамические характеристики и параметры
- •6.6 Вид реализуемой логической функции
- •6.7 Потребляемые токи и мощность
- •6.8 Входные и выходные токи, напряжения
- •6.9 Пороговые напряжения
- •6.10 Допустимые значения основных параметров
- •7. Базовые логические элементы
- •7.1 Базовый ттл (ттлш) - элемент и-не
- •7.2 Базовый эсл - элемент или/или-не
- •7.3 Базовый кмоп-элемент или-не
- •8. Генераторы тактовых импульсов (гти) на логических элементах
- •8.1 Гти на двух инверторах
- •8.2 Гти на 3-х инверторах.
- •9. Функциональные устройства компьютерной (цифровой) электроники
- •9.1 Комбинационные цифровые устройства (кцу)
- •9.1.1 Анализ и синтез кцу
- •9.1.1.1 Анализ кцу
- •9.1.1.2 Синтез кцу
- •9.1.2 Типовые кцу
- •9.1.2.1 Шифраторы и дешифраторы
- •9.1.2.1.1 Шифраторы двоичного кода
- •9.1.2.1.2 Шифраторы двоично-десятичного кода
- •9.1.2.1.3 Дешифраторы двоичного кода
- •9.1.2.1.4 Дешифратор bcd-кода в семисегментный код
- •9.1.2.1.4.1 Семисегментные индикаторы на светодиодах
- •9.1.2.2 Мультиплексоры и демультиплексоры
- •9.1.2.2.1 Мультиплексоры
- •9.1.2.2.2 Демультиплексоры
- •9.1.2.2.3 Мультиплексоры–селекторы (мультиплексоры-демультиплексоры)
- •9.1.2.3 Сумматоры и полусумматоры
- •9.1.2.4 Устройства контроля четности (укч)
- •9.1.2.5 Цифровые компараторы
- •9.1.3 Использование для проектирования кцу мультиплексоров, дешифраторов и постоянных запоминающих устройств
- •9.1.3.1 Построение кцу на мультиплексорах
- •9.1.3.2 Построение кцу на дешифраторах
- •9.1.3.3 Построение кцу на постоянном запоминающем устройстве (пзу)
- •9.2 Последовательностные цифровые устройства
- •9.2.1 Триггеры
- •9.2.1.1 Триггеры на логических элементах
- •9.2.1.1.1 Rs - триггеры
- •9.2.1.1.1.1 Асинхронные rs - триггеры
- •9.2.1.1.1.2 Синхронные rs - триггеры
- •9.2.1.1.2 Т-триггеры (триггеры со счетным входом)
- •9.2.1.1.3 D-триггеры (триггеры задержки)
- •9.2.1.1.4 Jk-триггеры
- •9.2.1.2 Триггеры в интегральном исполнении
- •9.2.2 Регистры
- •9.2.2.1 Параллельные регистры
- •9.2.2.2 Последовательные (сдвигающие) регистры
- •9.2.2.3 Регистры сдвига
- •9.2.2.4 Последовательно-параллельные и параллельно-последовательные регистры
- •9.2.2.5 Регистры в интегральном исполнении
- •9.2.3.1 Асинхронный суммирующий двоичный счетчик с последовательным переносом
- •9.2.3.2 Асинхронный вычитающий двоичный счетчик с последовательным переносом
- •9.2.3.3 Асинхронные реверсивные двоичные счетчики с последовательным переносом
- •9.2.3.4 Синхронный счетчик со сквозным переносом
- •9.2.3.5 Десятичные счетчики
- •9.2.3.6 Счетчики в интегральном исполнении
- •9.2.4 Делители частоты
- •9.2.5 Распределители
- •10. Связь мп-ра и омэвм с аналоговым объектом управления и с пк
- •10.1 Структура типичной локальной микропроцессорной системы управления (лмпсу)
- •10.1.1 Назначение и схемная реализация отдельных узлов лмпсу
- •10.1.1.1 Аналоговый мультиплексор (ампс)
- •10.1.1.2 Устройство выборки-хранения (увх)
- •10.1.1.3 Аналого-цифровой преобразователь (ацп)
- •10.1.1.4 Ведомая однокристальная микроЭвм (омэвм)
- •10.1.1.5 Шинный формирователь (шф)
- •10.1.1.6 Регистры (Рг1...Рг3)
- •10.1.1.7 Схемы согласования уровней (ссу1...Ссу3)
- •10.1.1.8 Цифро-аналоговые преобразователи (цап1...Цап3)
- •10.2 Применение ацп и увх при вводе аналоговой информации в мпс
- •10.2.1 Расчет ацп
- •10.2.2.1 Описание микросхемы к1113 пв1
- •10.2.2.2 Расчет микросхемы к1113 пв1
- •10.2.2.3 Ввод данных от ацп в мпс через ппи в режиме 0
- •10.2.3 Устройство выборки и хранения (увх)
- •10.2.3.1 Обоснование применения увх
- •10.2.3.2 Принцип действия, схема и основные параметры увх
- •10.2.3.3 Функциональные возможности и схема включения микросхемы увх к1100ск2 (кр1100ск2)
- •10.2.4.1 Описание микросхемы max154. Временные диаграммы и режимы работы
- •10.2.4.2 Расчет ацп max154
- •10.3 Применение цап при выводе цифровой информации из мпс
- •10.3.1 Расчет цап на матрице r-2r c суммированием токов
- •10.3.2.1 Описание микросхемы к572 па1
- •10.3.2.2 Расчет цап к572 па1
- •10.3.3.1 Описание микросхемы max506
- •10.3.3.2 Расчет цап max506
- •10.4 Особенности аппаратной и программной реализации модуля ацп-цап мпс
- •10.4.1 Аппаратный уровень:
- •10.4.2 Программный уровень:
- •10.5 Обмен между мп-м (омэвм) и пк по последовательному каналу связи с помощью интерфейса rs-232с
- •10.5.1 Устройство асинхронное программируемое приёмопередающее (уапп)
- •10.5.2 Устройство преобразования уровней (упу)
- •10.5.3 Разъём rs-232с
- •10.5.4 Буферный регистр адреса rs-232c
- •10.5.5 Шинный формирователь
- •10.6 Выбор и расчет датчиков, нормирующих преобразователей и фильтров нижних частот (фнч)
- •10.6.1 Выбор и расчет датчиков и нормирующих преобразователей
- •10.6.1.1 Выбор датчиков
- •10.6.1.2 Выбор нормирующих преобразователей
- •10.6.2 Выбор фнч
- •10.6.3 Расчет фнч
- •10.7 Разработка схемы алгоритма и управляющей программы
9.1.2.1.4 Дешифратор bcd-кода в семисегментный код
Подобное название имеет преобразователь двоично-десятичного (BCD) кода в код семисегментного индикатора десятичных цифр.
9.1.2.1.4.1 Семисегментные индикаторы на светодиодах
Очень распространенным выходным устройством отображения десятичных чисел является семисегментный индикатор. Семь сегментов индикатора обозначены буквами от а до g (рисунок 9.11, а).
Рисунок 9.11
Способ изображения десятичных цифр от 0 до 9 показан на рисунке 9.11,б. Например, если светятся сегменты a, b и c, то на индикаторе появляется десятичная цифра 7. Если светятся все сегменты от a до g, то появляется цифра 8. Существует несколько разновидностей индикаторов: на жидких кристаллах (ЖКИ), накальные (подобен обычным лампам накаливания), светодиодные и т.д.
Основной частью светодиода [18] является диод с плоскостным p-n - переходом. Когда диод включен в прямом направлении, через p-n - переход протекает ток и возникает излучение, которое фокусируется в индикаторе специальной линзой, чтобы его можно было наблюдать в виде загорания определенного сегмента.
Схема включения одного светодиода (сегмента) приведена на рисунке 9.12,а.
Рисунок 9.12
.(9.4.1)
Когда ключ SA1 замкнут, ток от источника Епит=+5В течет через светодиод, вызывая его свечение. Последовательно включенный резистор ограничивает ток до уровня примерно (10…20) мА. Без ограничивающего резистора светодиод может выйти из строя. Обычно на выводах светодиодов при излучении допускается напряжение (UVD.пр) не более (1,7…2) В. Как и всякий диод, светодиод чувствителен к полярности приложенного напряжения. Чтобы он был включен в прямом направлении катод (К) должен быть подключен к отрицательному полюсу источника питания (земле), а анод (А) – к его положительному полюсу.
Устройство семисегментного индикатора на светодиодах показано на рисунке 9.12, б. В каждом сегменте (от а до g) содержится светодиод и фокусирующая линза. Аноды всех светодиодов соединены вместе и подключены с правой стороны индикатора к одному выводу - общему аноду (ОА). Катоды каждого светодиода связаны с внешними выводами, обозначенными a, b, c, ... g. Индикатор (рисунок 9.12, б) относится к семисегментным светодиодным индикаторам с общим анодом. Существуют индикаторы с общим катодом [15].
На рисунке 9.12, в показано управление сегментами индикатора с помощью механических переключателей. При замыкании одного из ключей SA1...SA7 ток от Епит=+5В течет: через выбранный сегмент, ограничительный резистор и замкнутые контакты переключателя – на землю (-Епит). При этом выбранный сегмент будет светиться (излучать). Если, например, мы захотим высветить на индикаторе десятичную цифру 7, то необходимо замкнуть ключи SA1, SA2 и SA3, чтобы излучали сегменты а, b и с. Если хотим высветить цифру 5, необходимо замкнуть ключи SA1, SA3, SA4, SA6 и SA7, которые заземляют катоды сегментов a, c, d, f и g. Следует обратить внимание, что в светодиодном индикаторе с общим анодом для активизации (зажигания) сегментов необходимо подать потенциал земли (логический нуль) на вывод, соответствующий выбранному сегменту.
Для управления работой индикатора на рисунке 9.12, в использовались механические переключатели. Обычно управляющие сигналы формируются интегральными микросхемами, например, дешифратором BCD-кода в семисегментный код.
Ниже показано изображение такого дешифратора на электрических схемах (рисунок 9.13,а) и его подключение к семисегментному светодиодному индикатору с общим анодом (рисунок 9.13,б).
А Б
Рисунок 9.13
В качестве дешифраторов BCD-кода в семисегментный могут использоваться различные микросхемы, приведенные в [4, 15].
Например, ИМС К514ИД2, обозначение которой дано на рисунке 9.13,а, имеет открытые коллекторные выходы и используется совместно с индикаторами, имеющими общий анод. При этом требуется применение внешних резисторов, включаемых между выходами дешифратора и входами индикатора (см. рисунок 9.13,б). Допустимый ток микросхемы дешифратора по каждому выходу составляет 22 мА.
Помимо информационных входов, на которые поступает двоично-десятичный код, индикаторы могут содержать ряд управляющих входов [4, 15, 18], например, для подавления нулей, гашения, контроля свечения, синхронизации и т.д.