
- •Тени в ортогональных проекциях
- •Теоретические основы построения теней Общие сведения
- •Направление световых лучей
- •Тени основных геометрических фигур Тени точки, прямой и плоской фигуры Тень точки.
- •Построение падающей тени от точки на плоскость общего положения или поверхность (рис. 189) :
- •Тень прямой линии. Световые лучи, проходящие через множество точек прямой линии, образуют лучевую плоскость.
- •Тени прямых частного положения.
- •Тени плоских фигур.
- •Тень горизонтальной окружности.
- •Тень вертикальной окружности.
- •Тени геометрических тел
- •Тень призмы (рис. 197, а).
- •Тень цилиндра (рис. 197, 6).
- •Тень конуса (рис. 198, а).
- •Тень конуса, обращенного вершиной вниз, строится аналогичным образом {рис. 198, б).
- •4. Тень сферы (рис. 199, а).
- •Способы построения теней
- •Способ лучевых сечений
- •Способ вспомогательных касательных поверхностей.
- •Собственные тени вспомогательных конусов частного вида (рис. 202).
- •Построить контур собственной тени выпуклой поверхности вращения-о в о и д а (рис. 204).
- •Построить контур собственной тени вогнутой поверхности вращения тороид а (с к о ц и и).
- •Способ обратных лучей
- •Построение падающей тени от прямой ef на плоскость треугольника abc в ортогональных проекциях.
- •Способ "выноса".
- •Построить падающую тень от валика на меридиональной фронтальной плоскости (рис. 210).
- •Способ вспомогательных плоскостей уровня
- •Горизонтальные плоскости уровня. Построить падающую тень от прямой на поверхность вращения (рис. 211).
- •Построить падающую тень от квадратной плиты на поверхность вращения — эхин колонны (рис. 212).
- •Фронтальные плоскости уровня.
- •Способ вспомогательного проецирования
- •Построить собственные и падающие тени наклонного карниза (рис. 216).
- •Тени на ступенях лестницы (рис. 219).
- •Тени в нишах.
- •Тень открытой полуцилиндрической ниши (рис. 220, а).
- •Тень перекрытой полуцилиндрической ниши (рис. 220, б).
- •Тень полусферической ниши (рис.221, а).
- •Тень комбинированной ниши (рис. 221, б).
- •Тени карнизов.
- •Построение тени от наклонного карниза на горизонтальный профиль.
- •Тени конических поверхностей Тени ниши в форме полого усеченного конуса (рис. 225).
- •Тень от квадратной плиты на коническую поверхность архитектурной детали — "капельки" (рис. 226).
- •Тени поверхностей вращения с вертикальной осью
- •Тени однополостного гиперболоида вращения (рис. 229).
- •Построение собственной тени параболоида вращения (рис. 230).
- •Построение тени от круглой плиты на колонну (рис. 232).
- •Тени схематизированной капители (рис. 234).
- •Тени поверхностей вращения — архитектурных деталей с обратным профилем (рис. 235).
- •Тени сложных архитектурных фрагментов и поверхностей.
- •Тень от фронтона кровли на бревенчатую стену (рис. 237).
- •Тени гранного столба и плиты (рис. 238).
- •Приемы расчленения сложной формы.
- •Тени в разрезе арочного проема (рис. 240).
- •Тень в разрезе помещения цилиндрической формы с круглым отверстием (рис. 242).
- •Построение теней в перспективе
- •Построение теней при параллельных лучах света
- •1. Т е н ь точки.
- •2. Построение тени призматических тел (рис. 337).
- •Тени цилиндрической столба с квадратной плитой (рис. 338).
- •Построение тени в арочном проеме (рис. 339).
- •Построение собственной тени сферы и поверхности вращения (рис. 340).
- •Построение тени карниз а (рис. 341).
- •Построение теней в интерьере
- •Построение теней при солнечном освещении (рис. 342).
- •Построение теней при рассеянном освещении (рис. 343).
- •Построение теней при точечном источнике света.
Тени плоских фигур.
Вид тени от плоской фигуры зависит как от ее формы и положения в пространстве, так и от формы поверхности, на которую падает тень.
На рис. 194 построена падающая тень от плоскости общего положения, заданной треугольником ABC на плоскости проекций.
Тени от вершин треугольника оказались на разных плоскостях проекций.
Построение тени треугольника следует вести в той же последовательности, как и построение тени прямой (см. рис. 190, 6).
Сначала строят тень на плоскости Н, включая и часть мнимой тени, а затем строят тень на плоскости V.
Тень треугольника преломится и перейдет с плоскости Н на плоскость V.
Тень, падающая от плоской фигуры на параллельную ей плоскость, тождественна самой фигуре. Эта закономерность дает возможность значительно сократить построения.
Достаточно построить тень от одной точки фигуры, а затем изобразить равную (конгруэнтную) ей фигуру — контур падающей тени (рис. 195).
Тень горизонтальной окружности.
Тень от горизонтальной окружности на фронтальной плоскости проекций изобразится в виде эллипса, который является результатом пересечения плоскости обертывающей лучевой цилиндрической поверхностью.
Контур тени может быть получен путем построения теней ряда точек окружности.
Тень от окружности может быть построена также с помощью построения тени описанного квадрата, в которую вписывается затем эллипс по восьми точкам .
На рис. 196, а даны две проекции горизонтальной окружности.
Тень описанного квадрата представляет собой параллелограмм.
Его стороны и диагонали — это тени прямых частного положения (см. рис. 191).
В параллелограмм вписывается эллипс.
В процессе графических построений, как и в данном примере (см. дополнительную схему), бывает необходимо делить отрезок прямой в соотношении стороны квадрата к его диагонали, равном 0,707 ( 0,7).
Тень окружности на фасаде может быть построена без плана, так как тень одной из диагоналей располагается вертикально.
На рис. 196, б приведено построение падающей тени на фасаде от горизонтальной полуокружности.
Это построение довольно часто будет применяться при построении теней архитектурных деталей, состоящих из различных поверхностей вращения.
Тень полуокружности также может быть построена без второй проекции.
Тень вертикальной окружности.
На рис. 196, в построена тень на плоскости V от вертикальной окружности, расположенной в профильной плоскости.
Одна из диагоналей описанного вокруг окружности квадрата дает тень по горизонтали b'—dv.
В параллелограмм, который является тенью описанного квадрата, вписывают эллипс по восьми точкам.
Тени геометрических тел
При построении теней геометрических тел сначала следует определить контур собственной тени, а затем приступить к построению падающей тени, которая является тенью контура собственной тени.