
- •Примерный перечень вопросов к экзамену по курсу «основы психогенетики»
- •Методы изучения генетики: гибридологический, генеалогический, цитогенетический, математический, популяционно-статистический, молекулярно-генетический.
- •История генетики. Основные этапы развития генетики: от Менделя до наших дней. Основные разделы современной генетики.
- •4. Бесполое размножение. Особенности бесполого размножения у прокариот и эукариот.
- •5. Половое размножение. Мейоз и его типы. Фазы мейоза. Генетическое значение мейоза.
- •6. Гаметогенез: овогенез и сперматогенез у животных. Гаметогенез у растений.
- •7. Нерегулярные типы полового размножения, особенности наследования.
- •8. Моногибридное скрещивание. Первый и второй закон г. Менделя. Цитологические основы расщепления. Понятие доминантности и рецессивности, аллелизма, гомо- и гетерозиготности. Ген, генотип, фенотип.
- •9. Дигибридное скрещивание. Третий закон г. Менделя. Комбинационная изменчивость и её значение.
- •10. Тригибридное скрещивание. Расщепление по фенотипу и генотипу. Принцип дискретности генотипа.
- •11. Типы взаимодействия аллельных генов. Реципрокное, возвратное, анализирующее скрещивание и их значение.
- •12. Наследование при взаимодействии неаллельных генов: комплементарность, эпистаз, полимерия, плейотропия и модифицирующее действие генов.
- •13. Определение пола. Типы хромосомного определения пола. Балансовая теория определения пола. Половой хроматин.
- •Наследование признаков сцепленных полов. Соотношение полов в природе и значение.
- •15. Закон сцепления генов т. Моргана. Расщепление у гибридов при сцепленном наследовании. Кросинговер и его значение.
- •Локализация гена. Генетические карты растений, животных и микроорганизмов. Гибридизация соматических клеток как метод локализации генов у человека и животных.
- •Основные положения хромосомной теории наследственности.
- •Цитоплазматическая наследственность. Особенности наследования через пластиды, митохондрии. Ц. М. С. И её значение.
- •19. Организация генетического материала у прокариот и эукариот. Пространственная организация хромосом у эукариот.
- •20. Изменчивость. Классификация изменчивости. Комбинационная изменчивость, механизмы ёе возникновения и значение.
- •Классификация мутаций. Значение мутационной изменчивости. Генные мутации. Причины и механизмы их возникновения, значение.
- •Множественный аллелизм. Механизмы возникновения, значение и применение.
- •Генные мутации. Причины и механизмы их возникновения, значение.
- •Геномные мутации. Полиплоидия. Возникновение и характеристика полиплоидов. Работа г. Д. Карпеченко. Система новых видов.
- •Автополиплоидия. Получение. Расщепление по генотипу и фенотипу. Значение полиплоидии в селекции и эволюции.
- •Хромосомные перестройки. Внутри- и межхромосомные перестройки. Поведение в мейозе. Фенотипическое проявление и значение эволюции.
- •Анеуплоидия. Механизмы возникновения, особенности мейоза и образования гамет у анеуплоидов. Жизнеспособность и плодовитость у анеуплоидов.
- •Спонтанный и индуцированный мутагенез. Закон гомологических рядов в наследственной изменчивости н. И. Вавилова, его значение для понимания эволюции и практической селекции.
- •Модификационная изменчивость. Норма реакции генотипа. Значение модификационной изменчивости в эволюции.
- •Эволюция представлений о гене. Анализ структуры гена у бактериофага т-4. Современное представление об аллелизме.
- •Генетическая организация днк. Генетический код и его свойства.
- •Развитие представлений о гене от г. Менделя, т. Моргана до наших дней.
- •Значение работ по биохимии, генетике микроорганизмов, молекулярной генетике в формировании современного представления о гене.
- •Основные этапы реализации наследственной информации. Примеры.
- •Генетический контроль и регуляция генной активности на примере лактозного оперона кишечной палочки.
- •Микроорганизмы как объекты генетики. Явления трансформации и трансдукции у бактерий . Карты расположения генов у бактерий.
- •Популяция. Учение о популяциях и чистых линиях в. И. Иогансена. Свойства популяции.
- •Генетическая структура популяции. Наследование в популяциях. Генетическое равновесие в панмиктической популяции – закон Харди-Вайнберга
- •39. Факторы генетической динамики популяций: мутации, отбор, популяционные волны, изоляция, дрейф генов, миграции.
- •40. Человек как объект генетических исследований. Генеалогический метод изучения наследственности человека. Типы наследования признаков.
- •Цитогенетический метод изучения генетики человека. Кариотип человека в норме и патологии. Хромосомные болезни человека и методы их диагностики.
- •Близнецовый метод изучения генетики человека. Использование его при разработке
- •Селекция как наука и технология. Понятие о сорте, породе, штамме. Учение н. И. Вавилова об исходном материале в селекции. Центры происхождения растений.
- •Характеристика количественных признаков. Коэффициент наследуемости и его значение.
- •Учение ч. Дарвина об искусственном отборе. Формы отбора.
- •Наследственная изменчивость: комбинационная и мутационная, значение для селекции.
- •Типы скрещивания в селекции: аутобридинг, инбридинг, отдаленная гибридизация. Понятие о гетерозисе.
- •Использование методов клеточной, генной и генетической инженерии в селекции растений, животных, микроорганизмов.
- •Генная инженерия. Основные этапы. Использование генной инженерии в медицине и селекции.
- •Программа « геном человека». Основные направления исследований. Значение.
- •Геномные мутации половых хромосом.
- •Геномные мутации аутосом.
- •Генные мутации, их эволюционное значение
5. Половое размножение. Мейоз и его типы. Фазы мейоза. Генетическое значение мейоза.
Половое размножение встречается в основном у высших организмов. Это более поздний вид размножения (существует около 3 млрд лет). Оно обеспечивает значительное генетическое разнообразие и, следовательно, большую фенотипическую изменчивость потомства; организмы получают большие эволюционные возможности, возникает материал для естественного отбора.
Помимо полового размножения, существует половой процесс. Суть его в том, что обмен генетической информацией между особями происходит, но без увеличения числа особей. Формированию гамет у многоклеточных предшествует мейоз. Половой процесс состоит в объединении наследственного материала от двух разных источников (родителей).
При половом размножении потомство генетически отличается от своих родителей, так как между родителями происходит обмен генетической информацией.
Основой полового размножения является мейоз. Родителями являются две особи – мужская и женская, они вырабатывают разные половые клетки. В этом проявляется половой диморфизм, который отражает различие задач, выполняемых при половом размножении мужским и женским организмами.
Половое размножение осуществляется через гаметы – половые клетки, имеющие гаплоидный набор хромосом и вырабатывающиеся в родительских организмах. Слияние родительских клеток приводит к образованию зиготы, из которой в дальнейшем образуется организм-потомок. Половые клетки образуются в гонадах – половых железах (в яичниках у самок и семенниках у самцов).
Процесс образования половых клеток называется гаметогенезом (овогенезом у самок и сперматогенезом у самцов).
Если мужские и женские гаметы образуются в организме одной особи, то ее называют гермафродитной. Гермафродитизм бывает истинный (особь имеет гонады обоих полов) и ложный гермафродитизм (особь имеет половые железы одного типа – мужского или женского, а наружные половые органы и вторичные половые признаки обоих полов).
Мейоз – это вид деления клеток, при котором происходит уменьшение числа хромосом вдвое и переход клеток из диплоидного состояния в гаплоидное.
Мейоз представляет собой последовательность двух делений.
Первое деление мейоза (редукционное) приводит к образованию из диплоидных клеток гаплоидных. В профазу I, как и в митозе, происходит спирализация хромосом. Одновременно гомологичные хромосомы сближаются своими одинаковыми участками (конъюгируют), образуя биваленты. Перед вступлением в мейоз каждая хромосома имеет удвоенный генетический материал и состоит из двух хроматид, поэтому бивалента содержит 4 нити ДНК. В процессе дальнейшей спирализации может происходить кроссинговер – перекрест гомологичных хромосом, сопровождающийся обменом соответствующими участками между их хро-матидами. В метафазе I завершается формирование веретена деления, нити которого прикрепляются к центромерам хромосом, объединенных в биваленты таким образом, что от каждой центромеры идет только одна нить к одному из полюсов клетки. В анафазе I хромосомы расходятся к полюсам клетки, при этом у каждого полюса оказывается гаплоидный набор хромосом, состоящий их двух хроматид. В телофазе I восстанавливается ядерная оболочка, после чего материнская клетка делится на две дочерние.
Второе деление мейоза начинается сразу после первого и сходно с митозом, однако вступающие в него клетки несут гаплоидный набор хромосом. Профаза II по времени очень короткая. За ней наступает метафаза II, при этом хромосомы располагаются в экваториальной плоскости, образуется веретено деления. В анафазе II происходит разделение центромер, и каждая хроматида становится самостоятельной хромосомой. Отделившиеся друг от друга дочерние хромосомы направляются к полюсам деления. В телофазе II происходит деление клеток, в котором из двух гаплоидных клеток образуется 4 дочерние гаплоидные клетки.
Таким образом, в результате мейоза из одной диплоидной клетки образуются четыре клетки с гаплоидным набором хромосом.
В ходе мейоза осуществляются два механизма рекомбинации генетического материала:
Непостоянный (кроссинговер) представляет собой обмен гомологичными участками между хромосомами. Происходит в профазе I на стадии пахитены. Результат – рекомбинация ал-лельных генов.
Постоянный – случайное и независимое расхождение гомологичных хромосом в анафазе I мейоза. В результате гаметы получают разное число хромосом отцовского и материнского происхождения.
Значение мейоза
является основным этапом гаметогенеза;
обеспечивает передачу генетической информации от организма к организму при половом размножении;
дочерние клетки генетически не идентичны материнской и между собой.