
- •Примерный перечень вопросов к экзамену по курсу «основы психогенетики»
- •Методы изучения генетики: гибридологический, генеалогический, цитогенетический, математический, популяционно-статистический, молекулярно-генетический.
- •История генетики. Основные этапы развития генетики: от Менделя до наших дней. Основные разделы современной генетики.
- •4. Бесполое размножение. Особенности бесполого размножения у прокариот и эукариот.
- •5. Половое размножение. Мейоз и его типы. Фазы мейоза. Генетическое значение мейоза.
- •6. Гаметогенез: овогенез и сперматогенез у животных. Гаметогенез у растений.
- •7. Нерегулярные типы полового размножения, особенности наследования.
- •8. Моногибридное скрещивание. Первый и второй закон г. Менделя. Цитологические основы расщепления. Понятие доминантности и рецессивности, аллелизма, гомо- и гетерозиготности. Ген, генотип, фенотип.
- •9. Дигибридное скрещивание. Третий закон г. Менделя. Комбинационная изменчивость и её значение.
- •10. Тригибридное скрещивание. Расщепление по фенотипу и генотипу. Принцип дискретности генотипа.
- •11. Типы взаимодействия аллельных генов. Реципрокное, возвратное, анализирующее скрещивание и их значение.
- •12. Наследование при взаимодействии неаллельных генов: комплементарность, эпистаз, полимерия, плейотропия и модифицирующее действие генов.
- •13. Определение пола. Типы хромосомного определения пола. Балансовая теория определения пола. Половой хроматин.
- •Наследование признаков сцепленных полов. Соотношение полов в природе и значение.
- •15. Закон сцепления генов т. Моргана. Расщепление у гибридов при сцепленном наследовании. Кросинговер и его значение.
- •Локализация гена. Генетические карты растений, животных и микроорганизмов. Гибридизация соматических клеток как метод локализации генов у человека и животных.
- •Основные положения хромосомной теории наследственности.
- •Цитоплазматическая наследственность. Особенности наследования через пластиды, митохондрии. Ц. М. С. И её значение.
- •19. Организация генетического материала у прокариот и эукариот. Пространственная организация хромосом у эукариот.
- •20. Изменчивость. Классификация изменчивости. Комбинационная изменчивость, механизмы ёе возникновения и значение.
- •Классификация мутаций. Значение мутационной изменчивости. Генные мутации. Причины и механизмы их возникновения, значение.
- •Множественный аллелизм. Механизмы возникновения, значение и применение.
- •Генные мутации. Причины и механизмы их возникновения, значение.
- •Геномные мутации. Полиплоидия. Возникновение и характеристика полиплоидов. Работа г. Д. Карпеченко. Система новых видов.
- •Автополиплоидия. Получение. Расщепление по генотипу и фенотипу. Значение полиплоидии в селекции и эволюции.
- •Хромосомные перестройки. Внутри- и межхромосомные перестройки. Поведение в мейозе. Фенотипическое проявление и значение эволюции.
- •Анеуплоидия. Механизмы возникновения, особенности мейоза и образования гамет у анеуплоидов. Жизнеспособность и плодовитость у анеуплоидов.
- •Спонтанный и индуцированный мутагенез. Закон гомологических рядов в наследственной изменчивости н. И. Вавилова, его значение для понимания эволюции и практической селекции.
- •Модификационная изменчивость. Норма реакции генотипа. Значение модификационной изменчивости в эволюции.
- •Эволюция представлений о гене. Анализ структуры гена у бактериофага т-4. Современное представление об аллелизме.
- •Генетическая организация днк. Генетический код и его свойства.
- •Развитие представлений о гене от г. Менделя, т. Моргана до наших дней.
- •Значение работ по биохимии, генетике микроорганизмов, молекулярной генетике в формировании современного представления о гене.
- •Основные этапы реализации наследственной информации. Примеры.
- •Генетический контроль и регуляция генной активности на примере лактозного оперона кишечной палочки.
- •Микроорганизмы как объекты генетики. Явления трансформации и трансдукции у бактерий . Карты расположения генов у бактерий.
- •Популяция. Учение о популяциях и чистых линиях в. И. Иогансена. Свойства популяции.
- •Генетическая структура популяции. Наследование в популяциях. Генетическое равновесие в панмиктической популяции – закон Харди-Вайнберга
- •39. Факторы генетической динамики популяций: мутации, отбор, популяционные волны, изоляция, дрейф генов, миграции.
- •40. Человек как объект генетических исследований. Генеалогический метод изучения наследственности человека. Типы наследования признаков.
- •Цитогенетический метод изучения генетики человека. Кариотип человека в норме и патологии. Хромосомные болезни человека и методы их диагностики.
- •Близнецовый метод изучения генетики человека. Использование его при разработке
- •Селекция как наука и технология. Понятие о сорте, породе, штамме. Учение н. И. Вавилова об исходном материале в селекции. Центры происхождения растений.
- •Характеристика количественных признаков. Коэффициент наследуемости и его значение.
- •Учение ч. Дарвина об искусственном отборе. Формы отбора.
- •Наследственная изменчивость: комбинационная и мутационная, значение для селекции.
- •Типы скрещивания в селекции: аутобридинг, инбридинг, отдаленная гибридизация. Понятие о гетерозисе.
- •Использование методов клеточной, генной и генетической инженерии в селекции растений, животных, микроорганизмов.
- •Генная инженерия. Основные этапы. Использование генной инженерии в медицине и селекции.
- •Программа « геном человека». Основные направления исследований. Значение.
- •Геномные мутации половых хромосом.
- •Геномные мутации аутосом.
- •Генные мутации, их эволюционное значение
Типы скрещивания в селекции: аутобридинг, инбридинг, отдаленная гибридизация. Понятие о гетерозисе.
1) Инбридинг (от англ. in — «внутри» и breeding — «разведение») — скрещивание близкородственных форм в пределах одной популяции организмов (животных или растений). Термин инбридинг обычно используется для животных, а в отношении растений чаще используется термин «инцухт».
Инцест является ярко выраженной формой инбридинга, когда скрещивание происходит между особями, связанными прямым родством. Предельная форма инбридинга — самооплодотворение, когда организм оплодотворяет сам себя.
Инбридинг широко используется селекционерами для усиления целевых характеристик породы или сорта. Наиболее распространённая разновидность инбридинга, которая используется при селекции, называется лайнбридинг. При лайнбридинге потомки спариваются с каким-либо своим предком.
Как известно, диплоидный организм получает каждый ген в двух экземплярах (аллелях) — от отца и от матери. Если эти гены различаются, то особь называется гетерозиготной (по данному гену), а если не различаются, то гомозиготной. При инбридинге родители являются родственниками и поэтому имеют много одинаковых генов, в результате чего гомозиготность увеличивается с каждым поколением.
Инбридинг приводит к повышению постоянства фенотипических признаков в потомстве и, в конечном итоге, производится для получения линий генетически идентичных особей (инбредные линии), на которых удобно проводить биологические и медицинские эксперименты.
При близкородственном скрещивании (или самоопылении у растений) может возникать депрессия: уменьшение урожайности растительных культур, измельчание животных, возникновение аномалий и уродств. Это объясняется гомозиготностью по вредным рецессивным генам.
Аутбридинг — одна из форм искусственного отбора, представляющая собой, в отличие от инбридинга, неродственное скрещивание. В природе затруднен из-за различных форм изоляции. Человек преодолел барьеры изоляции путем искусственного оплодотворения и получая отдаленные гибриды растений и животных. Таким образом получены мул, бестер, хайнык, тритикале.
Метод состоит в скрещивании особей, относящихся к различным биологическим видам и родам. Аутбридинг обычно производят между представителями различных сортов или линий, а у некоторых растений — между близко родственными видами. Потомков от таких скрещиваний называют гибридами.
Аутбридинг позволяет объединить в одном организме гены, ответственные за ценные признаки различных особей. Аутбридинг приводит к явлению гетерозиса.
Отдаленная гибридизация скрещивание между организмами, относящимися к разным видам или родам. Обычно отдаленные гибриды бесплодны и их размножают вегетативным путем; для преодоления бесплодия гибридов применяют удвоение числа хромосом, таким путем получают амфидиплоидные организмы (плодовитый гибридный организм, сочетающий полные диплоидные наборы хромосом обоих родительских видов).
Гетерозис - ускорение роста, увеличение размеров, повышение жизнестойкости и плодовитости гибридов первого поколения по сравнению с родительскими формами растений или животных. Обычно во втором и последующих поколениях гетерозис затухает. Гетерозис широко используется в растениеводстве для получения гибридных семян, обладающей высокой урожайностью. Различают:
Истинный гетерозис - превосходство гибрида по какому-либо признаку над лучшим из родителей.
Гипотетический гетерозис - превосходство гибрида над средним, характерным для обоих родителей признаком.
Соматический гетерозис - более мощное развитие вегетативных органов (соматических признаков) у гибридных организмов.
Репродуктивный гетерозис - большее развитие репродуктивных органов, повышенная фертильность, приводящая к более высоким урожаям семян, плодов, более интенсивному размножению животных.
Адаптивный гетерозис - повышение приспособленности гибридных особей к условиям среды, их конкурентоспособности в борьбе за существование.