
- •Примерный перечень вопросов к экзамену по курсу «основы психогенетики»
- •Методы изучения генетики: гибридологический, генеалогический, цитогенетический, математический, популяционно-статистический, молекулярно-генетический.
- •История генетики. Основные этапы развития генетики: от Менделя до наших дней. Основные разделы современной генетики.
- •4. Бесполое размножение. Особенности бесполого размножения у прокариот и эукариот.
- •5. Половое размножение. Мейоз и его типы. Фазы мейоза. Генетическое значение мейоза.
- •6. Гаметогенез: овогенез и сперматогенез у животных. Гаметогенез у растений.
- •7. Нерегулярные типы полового размножения, особенности наследования.
- •8. Моногибридное скрещивание. Первый и второй закон г. Менделя. Цитологические основы расщепления. Понятие доминантности и рецессивности, аллелизма, гомо- и гетерозиготности. Ген, генотип, фенотип.
- •9. Дигибридное скрещивание. Третий закон г. Менделя. Комбинационная изменчивость и её значение.
- •10. Тригибридное скрещивание. Расщепление по фенотипу и генотипу. Принцип дискретности генотипа.
- •11. Типы взаимодействия аллельных генов. Реципрокное, возвратное, анализирующее скрещивание и их значение.
- •12. Наследование при взаимодействии неаллельных генов: комплементарность, эпистаз, полимерия, плейотропия и модифицирующее действие генов.
- •13. Определение пола. Типы хромосомного определения пола. Балансовая теория определения пола. Половой хроматин.
- •Наследование признаков сцепленных полов. Соотношение полов в природе и значение.
- •15. Закон сцепления генов т. Моргана. Расщепление у гибридов при сцепленном наследовании. Кросинговер и его значение.
- •Локализация гена. Генетические карты растений, животных и микроорганизмов. Гибридизация соматических клеток как метод локализации генов у человека и животных.
- •Основные положения хромосомной теории наследственности.
- •Цитоплазматическая наследственность. Особенности наследования через пластиды, митохондрии. Ц. М. С. И её значение.
- •19. Организация генетического материала у прокариот и эукариот. Пространственная организация хромосом у эукариот.
- •20. Изменчивость. Классификация изменчивости. Комбинационная изменчивость, механизмы ёе возникновения и значение.
- •Классификация мутаций. Значение мутационной изменчивости. Генные мутации. Причины и механизмы их возникновения, значение.
- •Множественный аллелизм. Механизмы возникновения, значение и применение.
- •Генные мутации. Причины и механизмы их возникновения, значение.
- •Геномные мутации. Полиплоидия. Возникновение и характеристика полиплоидов. Работа г. Д. Карпеченко. Система новых видов.
- •Автополиплоидия. Получение. Расщепление по генотипу и фенотипу. Значение полиплоидии в селекции и эволюции.
- •Хромосомные перестройки. Внутри- и межхромосомные перестройки. Поведение в мейозе. Фенотипическое проявление и значение эволюции.
- •Анеуплоидия. Механизмы возникновения, особенности мейоза и образования гамет у анеуплоидов. Жизнеспособность и плодовитость у анеуплоидов.
- •Спонтанный и индуцированный мутагенез. Закон гомологических рядов в наследственной изменчивости н. И. Вавилова, его значение для понимания эволюции и практической селекции.
- •Модификационная изменчивость. Норма реакции генотипа. Значение модификационной изменчивости в эволюции.
- •Эволюция представлений о гене. Анализ структуры гена у бактериофага т-4. Современное представление об аллелизме.
- •Генетическая организация днк. Генетический код и его свойства.
- •Развитие представлений о гене от г. Менделя, т. Моргана до наших дней.
- •Значение работ по биохимии, генетике микроорганизмов, молекулярной генетике в формировании современного представления о гене.
- •Основные этапы реализации наследственной информации. Примеры.
- •Генетический контроль и регуляция генной активности на примере лактозного оперона кишечной палочки.
- •Микроорганизмы как объекты генетики. Явления трансформации и трансдукции у бактерий . Карты расположения генов у бактерий.
- •Популяция. Учение о популяциях и чистых линиях в. И. Иогансена. Свойства популяции.
- •Генетическая структура популяции. Наследование в популяциях. Генетическое равновесие в панмиктической популяции – закон Харди-Вайнберга
- •39. Факторы генетической динамики популяций: мутации, отбор, популяционные волны, изоляция, дрейф генов, миграции.
- •40. Человек как объект генетических исследований. Генеалогический метод изучения наследственности человека. Типы наследования признаков.
- •Цитогенетический метод изучения генетики человека. Кариотип человека в норме и патологии. Хромосомные болезни человека и методы их диагностики.
- •Близнецовый метод изучения генетики человека. Использование его при разработке
- •Селекция как наука и технология. Понятие о сорте, породе, штамме. Учение н. И. Вавилова об исходном материале в селекции. Центры происхождения растений.
- •Характеристика количественных признаков. Коэффициент наследуемости и его значение.
- •Учение ч. Дарвина об искусственном отборе. Формы отбора.
- •Наследственная изменчивость: комбинационная и мутационная, значение для селекции.
- •Типы скрещивания в селекции: аутобридинг, инбридинг, отдаленная гибридизация. Понятие о гетерозисе.
- •Использование методов клеточной, генной и генетической инженерии в селекции растений, животных, микроорганизмов.
- •Генная инженерия. Основные этапы. Использование генной инженерии в медицине и селекции.
- •Программа « геном человека». Основные направления исследований. Значение.
- •Геномные мутации половых хромосом.
- •Геномные мутации аутосом.
- •Генные мутации, их эволюционное значение
Учение ч. Дарвина об искусственном отборе. Формы отбора.
Искусственный отбор направленный отбор особей (из поколения в поколение), проводимый человеком с целью улучшения существующей породы (сорта) или создания новой породы (сорта) животных, растений, грибов или микроорганизмов. Искусственный отбор ведёт обычно к закреплению тех свойств, которые ценны человеку для его хозяйственных целей, а не тех, которые более полезны самому организму, как это происходит при естественном отборе . Понятие «Искусственный отбор» ввёл в 1859 Ч. Дарвин, создавший теорию искусственного отбора. Он показал, что искусственный отбор основной фактор возникновения и дальнейшей эволюции домашних животных и культурных растений. Дарвин доказал происхождение пород домашних животных от одного или немногих видов диких предков. Так, все породы домашних кур произошли от дикого банкивского петуха.
Тщательное изучение явления искусственного отбора позволило Дарвину выделить две формы этого отбора: бессознательный и методический.
Бессознательный искусственный отбор проводили уже первобытные скотоводы и земледельцы, стремившиеся сохранить более ценные экземпляры животных и растений и получить от них потомство. Сохранение из поколения в поколение лучших животных обеспечивало воспроизводство стада. Следовательно, бессознательный искусственный отбор по механизму действия (сохранение более приспособленных форм) и по результату (приспособление ко всему комплексу окружающих условий, включая и деятельность человека) близок к естественному отбору. Бессознательный искусственный отбор в ряде случаев может быть побочным результатом биотехнических мероприятий. Напр., по данным ВОЗ, к 1963 в результате массового применения ядохимикатов произошёл , помимо воли человека, отбор видов насекомых (вредителей с. х-ва), резистентных к действию ядов: многие десятки видов стали устойчивыми к ДДТ.
Методический искусственный отбор — массовый и индивидуальный (систематически применяется со 2-й пол. 18 в.), характеризуется целенаправленностью (отбирают особи по определенному признаку или комплексу признаков) и является основным методом селекции в с. х-ве.
При массовом искусственном отборе выбраковывают всех особей, не соответствующих принятому для породы стандарту. Совершенствование отбираемых признаков происходит обычно медленно.
При индивидуальном искусственном отборе каждая родительская форма оценивается не только по собств. качествам, но и по способности передавать их потомкам. Индивидуальный искусственный отбор включает и подбор родительских пар, сопровождаемый в животноводстве оценкой производителей по потомству, что позволяет контролировать генетические свойства родителей. Методом быстрого закрепления у потомков ценных свойств родителей является инбридинг.
Наследственная изменчивость: комбинационная и мутационная, значение для селекции.
К наследственной изменчивости относят изменения признаков организма, которые определяются генотипом и сохраняются в ряду поколений. Иногда это крупные изменения, например коротконогость, отсутствие рогов у домашнего скота, отсутствие пигмента (альбинизм) или оперения. В результате таких изменений возникли также карликовый рост душистого горошка, красная береза, растения, дающие махровые цветки, но чаще это мелкие, едва заметные уклонения от нормы. Наследственные изменения называют мутациями.
Дарвин называл наследственную изменчивость неопределенной, индивидуальной изменчивостью, подчеркивая тем самым ее случайный, ненаправленный характер и относительную редкость.
Наследственную, или генотипическую, изменчивость подразделяют на комбинативную и мутационную.
Комбинативная изменчивость изменчивость, в основе которой лежит образование рекомбинаций, т. е. таких комбинаций генов, которых не было у родителей.
В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса:
Независимое расхождение гомологичных хромосом в первом мейотическом делении. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами — пример комбинативной изменчивости.
Взаимный обмен участками гомологичных хромосом, или кроссинговер. Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.
Случайное сочетание гамет при оплодотворении.
Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются). Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение.
Комбинативная изменчивость является важнейшим источником всего колоссального наследственного разнообразия, характерного для живых организмов. Однако перечисленные источники изменчивости не порождают существенных для выживания стабильных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.
Мутационная изменчивость. Мутационной называется изменчивость самого генотипа. Мутации — это внезапные наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.
Основные положения мутационной теории разработаны Г. Де Фризом в 1901—1903 гг. и сводятся к следующему:
Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков.
В отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение.
Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными.
Вероятность обнаружения мутаций зависит от числа исследованных особей.
Сходные мутации могут возникать повторно.
Мутации ненаправленны (спонтанны), т. е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.
Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма. По характеру изменения генома, т. е. совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации
Геномные мутации — изменение числа хромосом в геноме клеток организма. Это явление происходит в двух направлениях: в сторону увеличения числа целых гаплоидных наборов (полиплоидия) и в сторону потери или включения отдельных хромосом (анеуплоидия).
Генные, или точковые, мутации— результат изменения нуклеотидной последовательности в молекуле ДНК в пределах одного гена. Такое изменение в гене воспроизводится при транскрипции в структуре иРНК; оно приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся при трансляции на рибосомах. В результате синтезируется другой белок, что ведет к изменению соответствующего признака организма. Это наиболее распространенный вид мутаций и важнейший источник наследственной изменчивости организмов. Существуют разные типы генных мутаций, связанных с добавлением, выпадением или перестановкой нуклеотидов в гене:
дупликации (повторение участка гена),
вставки (появление в последовательности лишней пары нуклеотидов),
делеции ("выпадение одной или более пар нуклеотидов),
замены нуклеотидных пар,
инверсии (переворот участка гена на 180°).
Эффекты генных мутаций чрезвычайно разнообразны. Большая часть из них фенотипически не проявляется, поскольку они рецессивны. Это очень важно для существования вида, так как в большинстве своем вновь возникающие мутации оказываются вредными. Однако их рецессивный характер позволяет им длительное время сохраняться у особей вида в гетерозиготном состоянии без вреда для организма и проявиться в будущем при переходе в гомозиготное состояние.
Хромосомные мутации (перестройки, или аберрации) — это изменения в структуре хромосом, которые можно выявить и изучить под световым микроскопом.
Известны перестройки разных типов:
нехватка, или дефишенси, — потеря концевых участков хромосомы;
делеция — выпадение участка хромосомы в средней ее части;
дупликация — двух- или многократное повторение генов, локализованных в определенном участке хромосомы;
инверсия — поворот участка хромосомы на 180°, в результате чего в этом участке гены расположены в последовательности, обратной по сравнению с обычной;
транслокация — изменение положения какого-либо участка хромосомы в хромосомном наборе. К наиболее распространенному типу транслокаций относятся реципрокные, при которых происходит обмен участками между двумя негомологичными хромосомами. Участок хромосомы может изменить свое положение и без реципрокного обмена, оставаясь в той же хромосоме или включаясь в какую-то другую.
При дефишенси, делециях и дупликациях изменяется количество генетического материала. Степень фенотипического изменения зависит от того, насколько велики соответствующие участки хромосом и содержат ли они важные гены. Примеры дефишенси известны у многих организмов, включая человека. Тяжелое наследственное заболевание —синдром «кошачьего крика» (назван так по характеру звуков, издаваемых больными младенцами), обусловлен гетерозиготностью по дефишенси в 5-й хромосоме. Этот синдром сопровождается сильным нарушением роста и умственной отсталостью. Обычно дети с таким синдромом рано умирают, но некоторые доживают до зрелого возраста.