
- •Примерный перечень вопросов к экзамену по курсу «основы психогенетики»
- •Методы изучения генетики: гибридологический, генеалогический, цитогенетический, математический, популяционно-статистический, молекулярно-генетический.
- •История генетики. Основные этапы развития генетики: от Менделя до наших дней. Основные разделы современной генетики.
- •4. Бесполое размножение. Особенности бесполого размножения у прокариот и эукариот.
- •5. Половое размножение. Мейоз и его типы. Фазы мейоза. Генетическое значение мейоза.
- •6. Гаметогенез: овогенез и сперматогенез у животных. Гаметогенез у растений.
- •7. Нерегулярные типы полового размножения, особенности наследования.
- •8. Моногибридное скрещивание. Первый и второй закон г. Менделя. Цитологические основы расщепления. Понятие доминантности и рецессивности, аллелизма, гомо- и гетерозиготности. Ген, генотип, фенотип.
- •9. Дигибридное скрещивание. Третий закон г. Менделя. Комбинационная изменчивость и её значение.
- •10. Тригибридное скрещивание. Расщепление по фенотипу и генотипу. Принцип дискретности генотипа.
- •11. Типы взаимодействия аллельных генов. Реципрокное, возвратное, анализирующее скрещивание и их значение.
- •12. Наследование при взаимодействии неаллельных генов: комплементарность, эпистаз, полимерия, плейотропия и модифицирующее действие генов.
- •13. Определение пола. Типы хромосомного определения пола. Балансовая теория определения пола. Половой хроматин.
- •Наследование признаков сцепленных полов. Соотношение полов в природе и значение.
- •15. Закон сцепления генов т. Моргана. Расщепление у гибридов при сцепленном наследовании. Кросинговер и его значение.
- •Локализация гена. Генетические карты растений, животных и микроорганизмов. Гибридизация соматических клеток как метод локализации генов у человека и животных.
- •Основные положения хромосомной теории наследственности.
- •Цитоплазматическая наследственность. Особенности наследования через пластиды, митохондрии. Ц. М. С. И её значение.
- •19. Организация генетического материала у прокариот и эукариот. Пространственная организация хромосом у эукариот.
- •20. Изменчивость. Классификация изменчивости. Комбинационная изменчивость, механизмы ёе возникновения и значение.
- •Классификация мутаций. Значение мутационной изменчивости. Генные мутации. Причины и механизмы их возникновения, значение.
- •Множественный аллелизм. Механизмы возникновения, значение и применение.
- •Генные мутации. Причины и механизмы их возникновения, значение.
- •Геномные мутации. Полиплоидия. Возникновение и характеристика полиплоидов. Работа г. Д. Карпеченко. Система новых видов.
- •Автополиплоидия. Получение. Расщепление по генотипу и фенотипу. Значение полиплоидии в селекции и эволюции.
- •Хромосомные перестройки. Внутри- и межхромосомные перестройки. Поведение в мейозе. Фенотипическое проявление и значение эволюции.
- •Анеуплоидия. Механизмы возникновения, особенности мейоза и образования гамет у анеуплоидов. Жизнеспособность и плодовитость у анеуплоидов.
- •Спонтанный и индуцированный мутагенез. Закон гомологических рядов в наследственной изменчивости н. И. Вавилова, его значение для понимания эволюции и практической селекции.
- •Модификационная изменчивость. Норма реакции генотипа. Значение модификационной изменчивости в эволюции.
- •Эволюция представлений о гене. Анализ структуры гена у бактериофага т-4. Современное представление об аллелизме.
- •Генетическая организация днк. Генетический код и его свойства.
- •Развитие представлений о гене от г. Менделя, т. Моргана до наших дней.
- •Значение работ по биохимии, генетике микроорганизмов, молекулярной генетике в формировании современного представления о гене.
- •Основные этапы реализации наследственной информации. Примеры.
- •Генетический контроль и регуляция генной активности на примере лактозного оперона кишечной палочки.
- •Микроорганизмы как объекты генетики. Явления трансформации и трансдукции у бактерий . Карты расположения генов у бактерий.
- •Популяция. Учение о популяциях и чистых линиях в. И. Иогансена. Свойства популяции.
- •Генетическая структура популяции. Наследование в популяциях. Генетическое равновесие в панмиктической популяции – закон Харди-Вайнберга
- •39. Факторы генетической динамики популяций: мутации, отбор, популяционные волны, изоляция, дрейф генов, миграции.
- •40. Человек как объект генетических исследований. Генеалогический метод изучения наследственности человека. Типы наследования признаков.
- •Цитогенетический метод изучения генетики человека. Кариотип человека в норме и патологии. Хромосомные болезни человека и методы их диагностики.
- •Близнецовый метод изучения генетики человека. Использование его при разработке
- •Селекция как наука и технология. Понятие о сорте, породе, штамме. Учение н. И. Вавилова об исходном материале в селекции. Центры происхождения растений.
- •Характеристика количественных признаков. Коэффициент наследуемости и его значение.
- •Учение ч. Дарвина об искусственном отборе. Формы отбора.
- •Наследственная изменчивость: комбинационная и мутационная, значение для селекции.
- •Типы скрещивания в селекции: аутобридинг, инбридинг, отдаленная гибридизация. Понятие о гетерозисе.
- •Использование методов клеточной, генной и генетической инженерии в селекции растений, животных, микроорганизмов.
- •Генная инженерия. Основные этапы. Использование генной инженерии в медицине и селекции.
- •Программа « геном человека». Основные направления исследований. Значение.
- •Геномные мутации половых хромосом.
- •Геномные мутации аутосом.
- •Генные мутации, их эволюционное значение
Цитоплазматическая наследственность. Особенности наследования через пластиды, митохондрии. Ц. М. С. И её значение.
Для того чтобы та или иная структура могла выполнять функции материального носителя наследственности и обеспечивать количественные закономерности наследования, она должна содержать материальные носители генетической информации (нуклеиновые кислоты), обладать способностью к самовоспроизведению и точно распределяться по дочерним клеткам при делении. Всем трем условиям полностью удовлетворяют только структуры ядра – хромосомы. Наследование, определяемое хромосомами, получило название ядерного или хромосомного.
Полуавтономные органоиды цитоплазмы – митохондрии и пластиды – содержат ДНК и обладают способностью к саморепродукции. В тех случаях, когда материальной основой наследования являются элементы цитоплазмы, оно называется нехромосомным или цитоплазматическим.
В отличие от хромосом, митохондрии и пластиды не распределяется при делении клетки с абсолютной точностью. Именно в этом и состоит главное отличие ядерных структур (хромосом) от цитоплазматических. Кроме того, ядро содержит ограниченное и характерное для каждого вида число хромосом; в цитоплазме же обычно много однозначных органоидов, число их, как правило, непостоянно. Ядро в большинстве случаев не способно исправить и заместить возникшие дефекты хромосом, они воспроизводятся при делении клетки; поврежденные и неспособные к размножению органоиды цитоплазмы могут быть замещены путем размножения одноименных неповрежденных структур.
Приведенные различия в свойствах хромосом и полуавтономных органоидов цитоплазмы должны обусловливать и различия в закономерностях наследования, определяемых этими элементами клетки. Поскольку и у растений, и у животных яйцеклетка содержит много цитоплазмы, а мужская гамета ее, как правило, почти лишена, следует ожидать, что цитоплазматическое наследование, в отличие от хромосомного, должно осуществляться по материнской линии. Поскольку для органоидов цитоплазмы нет такого точного механизма распределения при делении клеток, который существует для хромосом, то, очевидно, цитоплазматическое наследование не может характеризоваться такими строгими количественными закономерностями, как ядерное.
Генетический материал митохондрий включает несколько десятков кольцевых и линейных двуспиральных правозакрученных молекул ДНК, которые отличаются по нуклеотидному составу от ядерной ДНК (яДНК) и не связаны с гистонами. Длина одной молекулы митохондриальной ДНК (мтДНК) – 15–75 тпн. (в тысячи раз меньше, чем длина яДНК), что позволяет кодировать несколько десятков белков (25– 125 полипептидов с молекулярной массой М = 40000). В мтДНК закодированы: транспортные и рибосомальные РНК (рибосомы митохондрий отличаются от рибосом цитоплазмы), некоторые ферменты (3 из 7 субъединиц цитохромоксидазы, две субъединицы комплекса цитохромов b–с1, иногда – субъединицы АТФазы). Этого недостаточно, чтобы обеспечить существование и функционирование митохондрий. Часть белков (ДНК- и РНК-полимеразы, белки митохондриальных рибосом, субъединицы дыхательных ферментов) поступает в готовом виде из цитоплазмы или в виде соответствующих иРНК, закодированных в яДНК. мтДНК человека представлена кольцевой молекулой длиной 16569 пн и содержит 13 белковых генов, 22 гена тРНК и 2 гена рРНК. Кодирующие последовательности разделены короткими межгенными некодирующими участками, для которых характерен высокий уровень полиморфизма, обусловленный заменами, потерями и вставками нуклеотидов.
Генетический материал хлоропластов включает несколько десятков кольцевых двуспиральных правозакрученных молекул ДНК, которые являются копиями друг друга. ДНК хлоропластов (хлДНК) также отличается по нуклеотидному составу от яДНК и не связана с гистонами, однако имеются и черты сходства с яДНК (некоторые гены тРНК имеют интрон-экзонную структуру, а именно гены аланиновой и изолейциновой тРНК). Длина одной молекулы хлДНК – несколько сотен тпн (примерно в 10 раз больше, чем одиночная молекула мтДНК). хлДНК кодирует: часть транспортных и рРНК (рибосомы пластид отличаются от рибосом цитоплазмы), некоторые белки ( 3 субъединицы АТФазы, белки наружной и внутренней мембран, большую субъединицу рибулезодифосфаткарбоксилазы – всего около 30 белков, хотя теоретически может кодировать 100–150 белков). Большая часть белков хлоропласта закодирована в яДНК.
Особенности генетической информации, закодированной в ДНК полуавтономных органоидов. Генетическая информация, закодированная в полуавтономных органоидах, в наибольшей степени наследуется через цитоплазму, то есть по материнской линии. Считается, что мтДНК и хлДНК в наименьшей степени подвержены действию естественного отбора. Эти обстоятельства используются в микросистематике для выявления родственных связей между группами организмов. Однородность мтДНК человека позволяет предположить, что современное человечество происходит от немногих особей женского пола. Существует гипотеза, согласно которой некоторые гены способны переходить из одних типов ДНК в другие, например, из хлДНК в мтДНК. В то же время генетический код полуавтономных органоидов обладает специфичностью, например, триплет АУА в яДНК кодирует изолейцин, а в мтДНК – метионин, кодон ЦУГ – в яДНК – лейцин, в мтДНК – треонин. Существуют и другие разночтения кодонов.